Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
Neste revisjon
Forrige revisjon
wanp:publications [2019-10-11]
jorgeen [Publications in 2019]
wanp:publications [2022-09-22] (nåværende versjon)
matthewt [Preprints]
Linje 1: Linje 1:
 ====== Publications ====== ====== Publications ======
 +
 +
 +
 +
 +
 +
 +
  
 ==== Preprints ==== ==== Preprints ====
-   NAlibaud, Fdel TesoJEndaland ERJakobsen. The Liouville theorem and linear operators satisfying the maximum principle. //Submitted for publication.// Preprint: https://arxiv.org/abs/1907.02495 + 
-  * J. A. Carrillo, K. Grunertand HHolden. A Lipschitz metric for the Camassa-Holm equation. //Submitted for publication.// (2019 [[https://arxiv.org/abs/1904.02552|arXiv:1904.02552]] +  J.ACarrilloHHoldenSSolemNoise-driven bifurcations in a neural field system modelling networks of grid cells. // Preprint available. // (2021)   [[https://arxiv.org/abs/2109.07936|arXiv:2109.07936]] (//Journal of Mathematical Biology//, to appear) 
-  * N. Alibaud, J. Endal, and E. R. Jakobsen. Optimal and dual stability results for L1 viscosity and L-infinity entropy solutions. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1812.02058|arXiv:1812.02058]] +  * K. Grunert and AReigstad. A regularised system for the nonlinear variational wave equation .// Preprint available.// (2020) [[https://arxiv.org/abs/2008.13003|arXiv:2008.13003]] 
-  * DStan, F. del Teso, J. Vazquez. Existence of weak solutions for a general porous medium equation with nonlocal pressure. //To appear in ARMA// [[https://arxiv.org/abs/1609.05139|arXiv:1609.05139]]  +  * N. Alibaud, J. Endal, and E. R. Jakobsen. Optimal and dual stability results for L1 viscosity and L-infinity entropy solutions. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1812.02058|arXiv:1812.02058]].
-  * D. Nilsson and Y. Wang. Solitary wave solutions to a class of Whitham-Boussinesq systems. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1810.03405|arXiv:1810.03405]].\\ +
-  * G. Bruell and R.N. Dhara. Waves of maximal height for a class of nonlocal equations with homogeneous symbols. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1810.00248|arXiv:1810.00248]].\\ +
-  * G. Bruell and R. Granero-Belinchón. On the thin film Muskat and the thin film Stokes equations. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1802.05509|arXiv:1802.05509]].\\ +
-  * M. N. Arnesen. A non-local approach to waves of maximal height for the Degasperis-Procesi equation. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1808.08057|arXiv:1808.08057]].\\   +
-  * M. N. Arnesen. Non-uniform dependence on initial data for the Whitham equation. //Under revision.// (2016) [[https://arxiv.org/abs/1602.00250|arXiv:1602.00250]].\\ +
-  * M. Ehrnström and Y. Wang. Enhanced existence time of solutions to the fractional Korteweg-de Vries equation. //Submitted for publication.// (2018) [[https://arxiv.org/abs/1804.06297|arxiv:1804.06297]].\\ +
-  * L. Pei and Y. Wang, A conditional well-posedness result for the bidirectional Whitham equation. //Submitted for publication.// (2017). [[https://arxiv.org/abs/arXiv:1708.04551|arXiv:1708.04551]] +
-  * M. Ehrnström and E. Wahlén. On Whitham's conjecture of a highest cusped wave for a nonlocal shallow water wave equation. Accepted for publication in //Ann. Inst. H. Poincaré Anal. Non Linéaire// (2018). [[http://arxiv.org/abs/1602.05384|arXiv:1602.05384]] +
-  * U. S. Fjordholm, S. Lanthaler and S. Mishra. Statistical solutions of hyperbolic conservation laws I: Foundations. //To appear in ARMA// (2017). [[http://arxiv.org/abs/1605.05960|arXiv:1605.05960]] +
-  * U. S. Fjordholm and E. Wiedemann. Statistical solutions and Onsager's conjecture. //Submitted for publication// (2017). [[http://arxiv.org/abs/1706.04113|arXiv:1706.04113]]+
   * N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen. Characterization of nonlocal diffusion operators satisfying the Liouville theorem. Irrational numbers and subgroups of R^d. //Preprint available,// 2018. [[https://arxiv.org/abs/1807.01843|arXiv:1807.01843]]   * N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen. Characterization of nonlocal diffusion operators satisfying the Liouville theorem. Irrational numbers and subgroups of R^d. //Preprint available,// 2018. [[https://arxiv.org/abs/1807.01843|arXiv:1807.01843]]
-  * K. Brustad, P. Lindqvist, J. Manfredi: A discrete interpretation of the Dominative p-Laplacian. [[https://arxiv.org/abs/1809.00714v1|arxiv:1809.00714]] 
   * M. Lewicka, N. Ubostad: A stability result for the Infinity-Laplace Equation. [[https://arxiv.org/abs/1710.08635|arxiv:1710.08635]]   * M. Lewicka, N. Ubostad: A stability result for the Infinity-Laplace Equation. [[https://arxiv.org/abs/1710.08635|arxiv:1710.08635]]
-  * E. LindgrenP. Lindqvist: Infinity-Harmonic Potentials and Their Streamlines. [[https://arxiv.org/abs/1809.08130|arxiv:1809.08130]] +  * E. Lindgren and P. Lindqvist: On Infinity Ground States in the Plane. //To appear in Mathematical Research Letters. [[https://arxiv.org/abs/2102.08869|arxiv:2102.08869]]// 
-  * PLindqvistMParviainen: remark on infinite initial values for quasilinear parabolic equations. To appear in Journal of Nonlinear Analysis. [[https://arxiv.org/abs/1811.11541|arxiv:1811.11541]] +  * MEhrnströmK. Nik and C. Walker. A direct construction of a full family of Whitham solitary waves// To appear in Proc. Amer. Math. Soc. Preprint available. // 2022. [[https://arxiv.org/abs/2204.03274|arXiv:2204.03274]]. 
-  * E. Lindqren, P. LindqvistOn a comparison principle for Trudinger'Equation. [[https://arxiv.org/abs/1901.03591|arxiv:1901.03591]] +  * M. Ehrnström, S. Walsh and C. Zeng. Smooth stationary water waves with exponentially localized vorticity. // To appeaer in J. Eur. Math. Soc. (JEMS). Preprint avaiable. // 2020. [[https://arxiv.org/abs/1907.07335|arXiv:1907.07335]]. 
-  * F. Hoeg, P. Lindqvist: Regularity of solutions of the parabolic normalized p-Laplace equation. To appear in Advances Nonlinear Analysis 9 (2020), no. 1, 7-15. [[https://arxiv.org/abs/1802.04568|arxiv:1802.04568]]+  *F. Hildrum and J. Xue. Periodic Hölder waves in a class of negative-order dispersive equations. // Preprint available. // 2022. [[https://arxiv.org/abs/2202.07363|arXiv:2202.07363]]. 
 +  *O. I.H. Maehlen, J. Xue. One sided Hölder regularity of global weak solutions of negative order dispersive equations. // Preprint available. // 2021. [[https://arxiv.org/abs/2107.01039|arXiv:2107.01039]]. 
 +  *D. S. Seth, K. Varholm, E. Wahlén. Symmetric doubly periodic gravity-capillary waves with small vorticity. // Preprint available. // 2022. [[https://arxiv.org/abs/2204.13093|arXiv:2204.13093]]. 
 + 
 + 
 +==== Publications in 2022 ==== 
 + 
 +   * A. BressanS.T. Galtung, K. Grunert, and K.T. Nguyen. Shock interactions for the Burgers-Hilbert equation.//Comm. Partial Differential Equations.//47:1795-1844, 2022. [[https://doi.org/10.1080/03605302.2022.2084628|DOI]], [[https://arxiv.org/abs/2204.02421|arXIv:2204.02421]] 
 +   * K. Grunert and M. Tandy. Lipschitz stability for the Hunter-Saxton equation.//  J. Hyperbolic Differ. Equ.// 19: 275-310, 2022. [[https://doi.org/10.1142/S0219891622500072|DOI]], [[https://arxiv.org/abs/2103.10227|arXiv:2103.10227]]  
 +   * S. T. Galtung and K. Grunert. Stumpons are non-conservative traveling waves of the Camassa-Holm equation. // Phys. D// 433, 133196, 2022. [[https://doi.org/10.1016/j.physd.2022.133196|DOI]],[[https://arxiv.org/abs/2106.15443|arXiv:2106.15443]]  
 +   * K. Grunert and H. Holden. Uniqueness of conservative solutions for the Hunter–Saxton equation. //Research in the Mathematical Sciences// 9 Article no 9, 2022. [[https://doi.org/10.1007/s40687-022-00314-6|DOI]], [[https://arxiv.org/abs/2107.12681|arxiv]] 
 +   * F. del Teso, J. Endal, and E. R. Jakobsen. Uniform tail estimates and Lp-convergence for finite-difference approximations of nonlinear diffusion equations. // Discrete Contin. Dyn. Syst. // (2022), [[http://dx.doi.org/10.3934/dcds.2022108|DOI]]. [[https://arxiv.org/abs/2202.02297|arXiv:2202.02297]]. 
 +   * I. Chowdhury, O. Ersland, and E. R. Jakobsen. On Numerical Approximations of Fractional and Nonlocal Mean Field Games. // Found. Comput. Math. // (2022), [[https://doi.org/10.1007/s10208-022-09572-w|DOI]], [[https://arxiv.org/abs/2105.00073|arXiv:2105.00073]] 
 +   * F. del Teso, J. Endal, and M. Lewicka. On asymptotic expansions for the fractional infinity Laplacian. //Asymptot. Anal.//, 127(3):201--216, 2022. [[https://dx.doi.org/10.3233/ASY-211686|DOI]], [[https://arxiv.org/abs/2007.15765|arXiv]]  
 +   * E. Lindgren and P. LindqvistOn a comparison principle for Trudinger'equation//Adv. Calc. Var.// 15, no 3, (2022), 401--415. [[https://doi.org/10.1515/acv-2019-0095|DOI]], [[https://arxiv.org/abs/1901.03591|arxiv: 1901.03591]]. 
 +   * H. Holden, K. H. Karlsen, and P.H.C. Pang. Strong solutions of a stochastic differential equation with irregular random drift.// Stochastic Process. Appl. // 150:655-677, 2022. [[https://doi.org/10.1016/j.spa.2022.05.006|DOI]], [[https://arxiv.org/abs/2106.01790|arXiv:2106.01790]]. 
 +   * M. N. Arnesen. Decay and symmetry of solitary waves // J. Math. Anal. Appl. // 507:Paper No. 125450, 24, 2022. [[https://doi.org/10.1016/j.jmaa.2021.125450|DOI]], [[https://arxiv.org/abs/1906.03407|arXiv:1906.03407]]. 
 +   * H. Le. Waves of maximal height for a class of nonlocal equations with inhomogeneous symbols // Asymptot. Anal. // 127:355-380, 2022. [[https://doi.org/10.3233/asy-211694|DOI]], [[https://arxiv.org/abs/2012.10558|arXiv:2012.10558]]. 
 +   * M. Ehrnström, M. D. Groves, and D. Nilsson. Existence of Davey-Stewartson Type Solitary Waves for the Fully Dispersive Kadomtsev-Petviashvilii equation // SIAM J. Math. Anal. // 54:4954-4986, 2022. [[https://doi.org/10.1137/21M1451518|DOI]], [[https://arxiv.org/abs/2110.03971|arXiv:2110.03971]]. 
 +   * M. Ehrnström and Y. Wang. Enhanced existence time of solutions to evolution equations of Whitham type. // Discrete Contin. Dyn. Syst. // 42:3841-3860, 2022. [[https://doi.org/10.3934/dcds.2022035|DOI]], [[https://arxiv.org/abs/2008.12722|arXiv:2008.12722]]. 
 +   * D. Nilsson. Extended lifespan of the fractional BBM equation. // Aymptotic Analysis. // 129:239-259, 2022. [[https://doi.org/10.3233/ASY-211727|DOI]], [[https://arxiv.org/abs/1902.06336|arXiv:1902.06336]]. 
 + 
 +==== Publications in 2021 ==== 
 + 
 +    * H. Holden, K.H. Karlsen, and P.H.C. Pang. The Hunter–Saxton equation with noise. //Journal of Differential Equations// 270 (2021) 725–786. [[https://www.sciencedirect.com/science/article/pii/S0022039620304319|journal]], [[https://arxiv.org/pdf/2003.13984.pdf|arXiv:2003.13984]] 
 +    * G.M. Coclite, H. Holden, and N.H. Risebro. Singular diffusion with Neumann boundary conditions.  //Nonlinearity// 34 (2021), 1633–1662. [[https://iopscience.iop.org/article/10.1088/1361-6544/abde9d|journal]], [[https://arxiv.org/abs/2004.12428|arXiv:2004.12428]] 
 +    * S. T. Galtung and K. Grunert. A numerical study of variational discretizations of the Camassa--Holm equation. // BIT.// 61:1271-1309, 2021. [[https://doi.org/10.1007/s10543-021-00856-1|DOI]],[[https://arxiv.org/abs/2006.15562|arXiv:2006.15562]] 
 +    * K. Grunert and A. Reigstad. Traveling waves for the nonlinear variational wave equation.//Partial Differ. Equ. Appl.// 2:61, 2021. [[https://doi.org/10.1007/s42985-021-00116-5|DOI]], [[https://arxiv.org/abs/2009.03178|arXiv:2009.03178]] 
 +    * K. Grunert, A. Nordli, and S. Solem. Numerical conservative solutions of the Hunter-Saxton equation. // BIT //61:441-471, 2021. [[https://doi.org/10.1007/s10543-020-00835-y|DOI]], [[https://arxiv.org/abs/2005.03882|arXiv:2005.03882]] 
 +   * O. Ersland and E. R. Jakobsen. On fractional and nonlocal parabolic Mean Field Games in the whole space. //J. Differential Equations// 301: 428-470, 2021. [[https://doi.org/10.1016/j.jde.2021.08.026|DOI]] 
 +   * K. Grunert, H. Holden, E. R. Jakobsen, and N. C. Stenseth. Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig-MacArthur perdator-prey model. //Proc. Natl. Acad. Sci. USA// 118 (4), 2021. [[https://doi.org/10.1073/pnas.2017463118|DOI]] 
 +   * F. del TesoJ. Endal, and J. L. Vázquez. The one-phase fractional Stefan problem. //Math. Models Methods Appl. Sci.//, 31(1):83--131, 2021. [[https://doi.org/10.1142/S0218202521500032|DOI]], [[https://arxiv.org/abs/1912.00097|arXiv]]  
 +   * E. Lindgren and P. Lindqvist. The Gradient Flow of Infinity-Harmonic Potentials.// Advances in Mathematics// 378, Paper no. 107526, 2021. [[https://doi.org/10.1016/j.aim.2020.107526|DOI]], [[https://arxive.org/abs/2006.15328|arxiv:2006.15328]]. 
 +   * G. Bruell and R.N. Dhara. Waves of maximal height for a class of nonlocal equations with homogeneous symbols. // Indiana Univ. Math. J. // 70:711-742, 2021. [[https://doi.org/10.1512/iumj.2021.70.8368|DOI]], [[https://arxiv.org/abs/1810.00248|arXiv:1810.00248]]. 
 +   * E. Dinvay and D. Nilsson. Solitary wave solutions of a Whitham-Boussinesq system. // Nonlinear Anal. Real World Appl. // 60:Paper No. 103280, 24, 2021. [[https://doi.org/10.1016/j.nonrwa.2020.103280|DOI]], [[https://arxiv.org/abs/1903.11292|arXiv:1903.11292]]. 
 +==== Publications in 2020 ==== 
 + 
 +   * R.M. Colombo, H. Holden, and F. Marcellini. On the microscopic modeling of vehicular traffic on general networks. //SIAM J. Appl. Math//. 80 (2020), no. 3, 1377–1391. [[https://epubs.siam.org/doi/10.1137/19M1270896|journal]], [[https://arxiv.org/abs/2002.09512|arXiv:2002.09512]] 
 +   * A. Bressan, S.T. Galtung, A. Reigstad, and J. Ridder. Competition models for plant stems. // J. Differential Equations// 269, 1571--1611, 2020. [[https://doi.org/10.1016/j.jde.2020.01.013|DOI]], [[https://arxiv.org/abs/1909.02347|arXiv]] 
 +  * J. A. Carrillo, K. Grunert, and H. Holden. A Lipschitz metric for the Camassa-Holm equation. //Forum Math. Sigma//, 8, e27, 292 pages (2020). [[https://doi.org/10.1017/fms.2020.22|DOI]],  [[https://arxiv.org/abs/1904.02552|arXiv:1904.02552]] 
 +  *  N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen. The Liouville theorem and linear operators satisfying the maximum principle.  //J. Math. Pures Appl.//, 142: 229-242, 2020. [[https://doi.org/10.1016/j.matpur.2020.08.008|DOI]],[[https://arxiv.org/abs/1907.02495|arXiv:1907.02495]] 
 +  *  F. del Teso, J. Endal, and J. L. Vázquez. On the two-phase fractional Stefan problem. //Adv. Nonlinear Stud.//, 20(2):437–458, 2020. [[https://doi.org/10.1515/ans-2020-2081|DOI]], [[https://arxiv.org/abs/2002.01386|arXiv]]  
 +  * P. Lindqvist, M. Parviainen. A remark on infinite initial values for quasilinear parabolic equations. //Nonlinear Analysis// 194 (2020), 111391, [[https://doi.org/10.1016/j.na.2018.12.002|DOI]], [[https://arxiv.org/abs/1811.11541|arxiv:1811.11541]]. 
 +  * F. Hoeg, P. Lindqvist. Regularity of solutions of the normalized p-Laplace equation. //Advances Nonlinear Analysis//  9 (2020), no. 1, 7-15. [[https://doi.org/10.1515/anona-2018-0091|DOI]], [[https://arxiv.org/abs/1802.04568|arxiv:1802.04568]] 
 +  * K. Brustad, P. Lindqvist, and J. Manfredi. A discrete stochastic interpretation of the Dominative p-Laplace Equation. //Differential and Integral Equations// 33 (2020), 465-488. [[https://projecteuclid.org/journals/differential-and-integral-equations/volume-33/issue-9_2f_10/A-Discrete-Stochastic-Interpretation-of-the-Dominative-p-Laplacian/die/1600135322.full|journal]], [[https://arxiv.org/abs/1809.00714|arxiv:1809.00714]]. 
 +  * F. Hildrum. Solitary waves in dispersive evolution equations of Whitham type with nonlinearities of mild regularity. // Nonlinearity. // 33:1594-1624, 2020. [[https://doi.org/10.1088/1361-6544/ab60d5|DOI]], [[https://arxiv.org/abs/1903.03354|arXiv:1903.03354]]. 
 +  * K. Varholm. Global bifurcation of waves with multiple critical layers. // SIAM J. Math. Anal. // 52:5066-5089, 2020. [[https://doi.org/10.1137/19M1274845|DOI]], [[https://arxiv.org/abs/1907.05736|arXiv:1907.05736]]. 
 +  * K. Varholm, E. Wahlén, and S. Walsh. On the stability of solitary water waves with a point vortex. // Comm. Pure Appl. Math. // 73:2634-2684, 2020. [[https://doi.org/10.1002/cpa.21891|DOI]], [[https://arxiv.org/abs/1811.08024|arXiv:1811.08024]]
  
 ==== Publications in 2019 ==== ==== Publications in 2019 ====
-  * E. R. Jakobsen, A. Picarelli, C. Reisinger. Improved order 1/4 convergence for piecewise constant policy approximation of stochastic control problems. //Electon. Commun. Probab.// [[https://doi.org/10.1214/19-ECP256|DOI]] and [[https://arxiv.org/abs/1901.01193|arXiv:1901.01193]] + 
-  * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory. //SIAM J. Numer. Anal.// 57(5):2266–2299, 2019. [[https://epubs.siam.org/doi/abs/10.1137/19M1237041|DOI]], [[https://arxiv.org/abs/1801.07148|arXiv]] +  * H. Holden and N.H. Risebro. Models for dense multilane vehicular traffic. //SIAM Journal on Mathematical Analysis// 51 (5) (2019) 3694–3713. [[https://epubs.siam.org/doi/10.1137/19M124318X|journal]], [[https://arxiv.org/abs/1812.01361|arXiv:1812.01361]] 
-  * I. H. Biswas, I. Chowdhury, and E. R. Jakobsen. On the rate of convergence for monotone numerical schemes for nonlocal Isaacs equations. SIAM J. Numer. Anal. 57(2): 799-827, 2019. [[https://doi.org/10.1137/17M114995X|DOI]] +  * D. Stan, F. del Teso, J. Vazquez. Existence of weak solutions for a general porous medium equation with nonlocal pressure. //Arch. Rational Mech. Anal.//, 233:451–496, 2019. [[https://arxiv.org/abs/1609.05139|arXiv]], [[https://doi.org/10.1007/s00205-019-01361-0|DOI]] 
-  * J. A. Carrillo, K. Grunert, and H. Holden. A Lipschitz metric for the Hunter-Saxton equation. // Comm. Partial Differential Equations.// 44(4): 309-334, 2019. [[https://doi.org/10.1080/03605302.2018.1547744|DOI]],   [[https://arxiv.org/abs/1612.02961|arXiv:1612.02961]] +   * N. Cusimano, F. del Teso, L. Gerardo-Giorda. Numerical approximations for fractional elliptic equations via the method of semigroups. //M2AN Math. Methods Numer. anal.// [[https://doi.org/10.1051/m2an/2019076|DOI]], [[https://arxiv.org/abs/1812.01518|arXiv]]   
-  * H. Hanche-Olsen, H. Holden, E.Malinnikova. An improvement of the Kolmogorov--Riesz compactness theorem. // Expositiones Mathematicae // 37 (2019) 84-91. [[https://dx.doi.org/10.1016/j.exmath.2018.03.002|DOI]], [[https://arxiv.org/abs/1705.01349|arXiv:1705.01349v1]]  +   * E. R. Jakobsen, A. Picarelli, C. Reisinger. Improved order 1/4 convergence for piecewise constant policy approximation of stochastic control problems. //Electon. Commun. Probab.// [[https://doi.org/10.1214/19-ECP256|DOI]] and [[https://arxiv.org/abs/1901.01193|arXiv:1901.01193]] 
-  * J. Kinnunen, P. Lehtela, P. Lindqvist, M. Parviainen. Supercaloric functions for the porous medium equation.//J. Evol. Equ.//19 no. 1: 249-270, 2019.  {{:wanp:jee.pdf|}}.+   * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory. //SIAM J. Numer. Anal.// 57(5):2266–2299, 2019. [[https://epubs.siam.org/doi/abs/10.1137/19M1237041|DOI]], [[https://arxiv.org/abs/1801.07148|arXiv]] 
 +   * I. H. Biswas, I. Chowdhury, and E. R. Jakobsen. On the rate of convergence for monotone numerical schemes for nonlocal Isaacs equations. SIAM J. Numer. Anal. 57(2): 799-827, 2019. [[https://doi.org/10.1137/17M114995X|DOI]], [[https://arxiv.org/abs/1709.07743|arXiv:1709.07743]] 
 +   * J. A. Carrillo, K. Grunert, and H. Holden. A Lipschitz metric for the Hunter-Saxton equation. // Comm. Partial Differential Equations.// 44(4): 309-334, 2019. [[https://doi.org/10.1080/03605302.2018.1547744|DOI]],   [[https://arxiv.org/abs/1612.02961|arXiv:1612.02961]] 
 +   * H. Hanche-Olsen, H. Holden, E.Malinnikova. An improvement of the Kolmogorov--Riesz compactness theorem. // Expositiones Mathematicae // 37 (2019) 84-91. [[https://dx.doi.org/10.1016/j.exmath.2018.03.002|DOI]], [[https://arxiv.org/abs/1705.01349|arXiv:1705.01349v1]]  
 +   * J. Kinnunen, P. Lehtela, P. Lindqvist, M. Parviainen. Supercaloric functions for the porous medium equation.// J. Evol. Equ.//19 no. 1: 249-270, 2019. [[https://doi.org/10.1007/s00028-018-0474-y|doi]], [[https://arxiv.org/abs/1801.04121|arXiv:1801.04121]], {{:wanp:jee.pdf|}}. 
 +   * E. Lindgren and P. Lindqvist. Infinity-Harmonic Potentials and their Streamlines. // Discrete Contin. Dyn. Syst.// 39, no. 8, 2019, 4731--4746. [[https://doi.org/10.3934/dcds.2019192|DOI]], [[https://arxiv.org/abs/1809.08130|arxiv:1809.08130]] 
 +   * D. Nilsson and Y. Wang. Solitary wave solutions to a class of Whitham-Boussinesq systems. //Z. Angew. Math. Phys.// 70, no. 13, 2019. [[https://doi.org/10.1007/s00033-019-1116-0|DOI]], [[https://arxiv.org/abs/1810.03405|arXiv:1810.03405]] 
 +   * M. N. Arnesen. A non-local approach to waves of maximal height for the Degasperis-Procesi equation. // J. Math. Anal. Appl. // 479:25-44, 2019. [[https://doi.org/10.1016/j.jmaa.2019.06.014|DOI]], [[https://arxiv.org/abs/1808.08057|arXiv:1808.08057]] 
 +   * M. Ehrnström and Y. Wang. Enhanced existence time of solutions to the fractional Korteweg-de Vries equation. // SIAM J. Math. Anal. // 51:3298-3323, 2019. [[https://doi.org/10.1137/19M1237867|DOI]], [[https://arxiv.org/abs/1804.06297|arxiv:1804.06297]] 
 +   * M. Ehrnström and E. Wahlén. On Whitham's conjecture of a highest cusped wave for a nonlocal dispersive equation. // Ann. Inst. H. Poincaré C Anal. Non Linéaire // 36:1603-1637, 2019. [[https://doi.org/10.1016/j.anihpc.2019.02.006|DOI]], [[http://arxiv.org/abs/1602.05384|arXiv:1602.05384]]. 
 +   * L, Pei and Y, Wang. A note on well-posedness of bidirectional Whitham equation. //Appl. Math. Lett. // 98:215-223, 2019 [[https://doi.org/10.1016/j.aml.2019.06.015|DOI]], [[https://arxiv.org/abs/arXiv:1708.04551|arXiv:1708.04551]]. 
 +   * G. Bruell and R. Granero-Belinchón. On the the thin film Muskat and the thin film Stokes equations. // J. Math. Fluid. Mech. // 21:1422-6928, 2019. [[https://doi.org/10.1007/s00021-019-0437-2|DOI]], [[https://arxiv.org/abs/1802.05509|arXiv:1802.05509]]. 
 +   * D. Nilsson and Y. Wang. Solitary wave solutions to a class of Whitham-Boussinesq systems. // Z. Angew. Math. Phys. // 70:Paper No. 70, 13, 2019. [[https://doi.org/10.1007/s00033-019-1116-0|DOI]], [[https://arxiv.org/abs/1810.03405|arXiv:1810.03405]]. 
 +   * M. N Arnesen. Non-uniform dependence on initial data for equations of Whitham type. // Adv. Differential Equations. // 24:257-282, 2019. [[https://projecteuclid.org/journals/advances-in-differential-equations/volume-24/issue-5_2f_6/Non-uniform-dependence-on-initial-data-for-equations-of-Whitham/ade/1554256825.full|Journal Article]], [[https://arxiv.org/abs/1602.00250|arXiv:1602.00250]]. 
 ==== Publications in 2018 ==== ==== Publications in 2018 ====
   * L. Chen and E. R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated with general Levy driven SDEs. //Discrete Contin. Dyn. Syst.// 38(11): 5735-5763, 2018. [[http://dx.doi.org/10.3934/dcds.2018250|DOI]]   * L. Chen and E. R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated with general Levy driven SDEs. //Discrete Contin. Dyn. Syst.// 38(11): 5735-5763, 2018. [[http://dx.doi.org/10.3934/dcds.2018250|DOI]]
Linje 37: Linje 94:
   * H.-L. Li and Y. Wang.  Formation of singularities of spherically symmetric solutions to the 3D compressible Euler equations and Euler-Poisson equations. //Nonlinear Differ. Equ. Appl.// 25 (2018). [[https://doi.org/10.1007/s00030-018-0534-6|DOI]].   * H.-L. Li and Y. Wang.  Formation of singularities of spherically symmetric solutions to the 3D compressible Euler equations and Euler-Poisson equations. //Nonlinear Differ. Equ. Appl.// 25 (2018). [[https://doi.org/10.1007/s00030-018-0534-6|DOI]].
   * K. Grunert and A. Nordli, Existence and Lipschitz stability for α-dissipative solutions of the two-component Hunter-Saxton system, //J. Hyper. Differential Equations// vol. 15 no 3 (2018) 559–597. [[https://doi.org/10.1142/S0219891618500182|DOI]] and [[https://arxiv.org/abs/1610.05673|arXiv:1610.05673]]   * K. Grunert and A. Nordli, Existence and Lipschitz stability for α-dissipative solutions of the two-component Hunter-Saxton system, //J. Hyper. Differential Equations// vol. 15 no 3 (2018) 559–597. [[https://doi.org/10.1142/S0219891618500182|DOI]] and [[https://arxiv.org/abs/1610.05673|arXiv:1610.05673]]
-  * M. Grasmair, K. Grunert, H. Holden. On the equivalence of Eulerian and Lagrangian variables for the  two-component Camassa--Holm system. On the equivalence of Eulerian and Lagrangian variables for the two-component Camassa-Holm system. //Current research in nonlinear analysis// 157–201, Springer Optim. Appl., 135, Springer, Cham, 2018. [[https://arxiv.org/abs/1704.05289|arXiv:1704.05289v1]]+  * M. Grasmair, K. Grunert, H. Holden. On the equivalence of Eulerian and Lagrangian variables for the  two-component Camassa--Holm system. //Current research in nonlinear analysis// 157–201, Springer Optim. Appl., 135, Springer, Cham, 2018. [[https://arxiv.org/abs/1704.05289|arXiv:1704.05289v1]]
   * K. Grunert and X. Raynaud. Symmetries and multipeakon solutions for the modified two-component Camassa-Holm system. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://www.ems-ph.org/books/book.php?proj_nr=231&srch=series%7Cecr|DOI]] and [[https://arxiv.org/abs/1704.06306|arXiv:1704.06306]]   * K. Grunert and X. Raynaud. Symmetries and multipeakon solutions for the modified two-component Camassa-Holm system. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://www.ems-ph.org/books/book.php?proj_nr=231&srch=series%7Cecr|DOI]] and [[https://arxiv.org/abs/1704.06306|arXiv:1704.06306]]
   * N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini. Discretizations of the Spectral Fractional Laplacian on General Domains with Dirichlet, Neumann, and Robin Boundary Conditions. //SIAM J. Numer. Anal.// 56-3 (2018), pp. 1243-1272. [[https://epubs.siam.org/doi/abs/10.1137/17M1128010|DOI]].   * N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini. Discretizations of the Spectral Fractional Laplacian on General Domains with Dirichlet, Neumann, and Robin Boundary Conditions. //SIAM J. Numer. Anal.// 56-3 (2018), pp. 1243-1272. [[https://epubs.siam.org/doi/abs/10.1137/17M1128010|DOI]].
Linje 45: Linje 102:
   * F. del Teso, J. Endal, and E. R. Jakobsen. On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://www.ems-ph.org/books/book.php?proj_nr=231&srch=series%7Cecr|DOI]], [[https://arxiv.org/abs/1610.02221|arXiv:1610.02221]]   * F. del Teso, J. Endal, and E. R. Jakobsen. On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://www.ems-ph.org/books/book.php?proj_nr=231&srch=series%7Cecr|DOI]], [[https://arxiv.org/abs/1610.02221|arXiv:1610.02221]]
   * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. //SIAM J. Numer. Anal.//, 56(6) (2018) 3611-3647. [[https://arxiv.org/abs/1804.04985|arXiv:1804.04985]] [[https://doi.org/10.1137/18M1180748|DOI]].   * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. //SIAM J. Numer. Anal.//, 56(6) (2018) 3611-3647. [[https://arxiv.org/abs/1804.04985|arXiv:1804.04985]] [[https://doi.org/10.1137/18M1180748|DOI]].
-  * P. Lindqvist, D. Ricciotti. Regularity for an anisotropic equation in the plane.//Nonlinear Analysis.//177 (2018), pp. 628-636.[[https://arxiv.org/abs/1801.08661|arXiv:1801.08661]]+  * P. Lindqvist, D. Ricciotti. Regularity for an anisotropic equation in the plane.// Nonlinear Analysis.//177 (2018), pp. 628-636.[[https://arxiv.org/abs/1801.08661|arXiv:1801.08661]]
   * H. Holden and N. H. Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill–Whitham–Richards model for traffic flow. //Networks and Heterogeneous Media    * H. Holden and N. H. Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill–Whitham–Richards model for traffic flow. //Networks and Heterogeneous Media 
 13(3) (2018) 409-421.// [[http://aimsciences.org/article/doi/10.3934/nhm.2018018|DOI]], [[https://arxiv.org/abs/1702.01718|arXiv:1702.01718]] 13(3) (2018) 409-421.// [[http://aimsciences.org/article/doi/10.3934/nhm.2018018|DOI]], [[https://arxiv.org/abs/1702.01718|arXiv:1702.01718]]
   * H. Holden and N. H. Risebro. The continuum limit of Follow-the-Leader models – a short proof. //Discrete and Continuous Dynamical Systems  38(2)  (2018) 715-722// [[https://aimsciences.org/article/doi/10.3934/dcds.2018031|DOI]], [[https://arxiv.org/abs/1709.07661|arXiv:1709.07661]]   * H. Holden and N. H. Risebro. The continuum limit of Follow-the-Leader models – a short proof. //Discrete and Continuous Dynamical Systems  38(2)  (2018) 715-722// [[https://aimsciences.org/article/doi/10.3934/dcds.2018031|DOI]], [[https://arxiv.org/abs/1709.07661|arXiv:1709.07661]]
 +  * U. S. Fjordholm and E. Wiedemann. Statistical solutions and Onsager's conjecture. // Phys. D  // 376-377:259-265, 2018 [[https://doi.org/10.1016/j.physd.2017.10.009|DOI]], [[http://arxiv.org/abs/1706.04113| arXiv:1706.04113]].
 +  * A. Aasen and K. Varholm. Traveling gravity water waves with critical layers. // J. Math. Fluid Mech.// 20:161-187. 2018. [[https://doi.org/10.1007/s00021-017-0316-7|DOI]], [[https://arxiv.org/abs/1508.04664|arXiv:1508.04664]].
  
 ==== Publications in 2017 ==== ==== Publications in 2017 ====
-  * G. Bruell, M. Ehrnström, A. Geyer and L. Pei, Symmetric solutions of evolutionary partial differential equations. //Nonlinearity//, 30, no.10: pp 3932--3950 (2017). [[https://arxiv.org/abs/arXiv:1704.05483|arXiv:1704.05483]] +  * G. Bruell, M. Ehrnström, A. Geyer and L. Pei, Symmetric solutions of evolutionary partial differential equations. //Nonlinearity//, 30, no.10: pp 3932--3950 (2017). [[https://arxiv.org/abs/arXiv:1704.05483|arXiv:1704.05483]]. 
-  * G. Bruell, M. Ehrnström and L. Pei. Symmetry and decay of traveling wave solutions to the Whitham equation. // J. Differential Equations // 262(8): pp 4232--4254 (2017). [[https://arxiv.org/abs/1608.07944|arXiv:1608.07944]] +  * G. Bruell, M. Ehrnström and L. Pei. Symmetry and decay of traveling wave solutions to the Whitham equation. // J. Differential Equations // 262(8): pp 4232--4254 (2017). [[https://arxiv.org/abs/1608.07944|arXiv:1608.07944]].
-  * AAasen and K. Varholm, Traveling gravity water waves with critical layers. //Journal of Mathematical Fluid Mechanics// (2017). [[https://link.springer.com/article/10.1007/s00021-017-0316-7|Online first]]+
   * H. Kalisch and F. Remonato, Numerical bifurcation for the capillary Whitham equation. //Physica D: Non-linear Phenomena//, vol. 343, pp. 51-62 (2017). [[https://doi.org/10.1016/j.physd.2016.11.003|DOI]]   * H. Kalisch and F. Remonato, Numerical bifurcation for the capillary Whitham equation. //Physica D: Non-linear Phenomena//, vol. 343, pp. 51-62 (2017). [[https://doi.org/10.1016/j.physd.2016.11.003|DOI]]
   * E. Chasseigne and E. R. Jakobsen. On nonlocal quasilinear equations and their local limits. //J. Differential Equations// 262(6): pp. 3759-3804 (2017). [[http://dx.doi.org/10.1016/j.jde.2016.12.001|DOI]], [[https://arxiv.org/abs/1503.06939|arXiv:1503.06939]]   * E. Chasseigne and E. R. Jakobsen. On nonlocal quasilinear equations and their local limits. //J. Differential Equations// 262(6): pp. 3759-3804 (2017). [[http://dx.doi.org/10.1016/j.jde.2016.12.001|DOI]], [[https://arxiv.org/abs/1503.06939|arXiv:1503.06939]]
   * F. del Teso, J. Endal, and E. R. Jakobsen. Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type. //Advances in Mathematics// 305: pp. 78-143 (2017). [[http://dx.doi.org/10.1016/j.aim.2016.09.021|DOI]], [[https://arxiv.org/abs/1507.04659|arXiv:1507.04659]]   * F. del Teso, J. Endal, and E. R. Jakobsen. Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type. //Advances in Mathematics// 305: pp. 78-143 (2017). [[http://dx.doi.org/10.1016/j.aim.2016.09.021|DOI]], [[https://arxiv.org/abs/1507.04659|arXiv:1507.04659]]
   * J. Eckhardt and K. Grunert. A Lagrangian view on complete integrability of the two-component Camassa-Holm system. //J. Integrable Syst.// 2:xyx002 (2017). [[https://doi.org/10.1093/integr/xyx002|DOI]], [[https://arxiv.org/abs/1605.05865|arXiv:1605.05865]]   * J. Eckhardt and K. Grunert. A Lagrangian view on complete integrability of the two-component Camassa-Holm system. //J. Integrable Syst.// 2:xyx002 (2017). [[https://doi.org/10.1093/integr/xyx002|DOI]], [[https://arxiv.org/abs/1605.05865|arXiv:1605.05865]]
-  * P. LindqvistE. Lindgren. Regularity of the p-Poisson Equation in the Plane.// Journal d"Analyse Mathematique// 132: pp. 217--228 (2017).  [[https://arxiv.org/abs/1311.6795 |arXiv:1311.6795]]+  * E. Lindgren and P. Lindqvist. Perron's Method and Wiener's Theorem for a Nonlocal Equation.// Potential Analysis// 46 no 4: pp. 705--737 (2017). [[https://arxiv.org/abs/1603.09184 |arxiv:1603.09184]] 
 +  * E. Lindgren and P. Lindqvist. Regularity of the p-Poisson Equation in the Plane.// Journal d'Analyse Mathematique// 132: pp. 217--228 (2017).  [[https://arxiv.org/abs/1311.6795 |arXiv:1311.6795]]
   * J. Eckhardt, F. Gesztesy, H. Holden, A. Kostenko, G. Teschl. Real-valued algebro-geometric solutions of the two-component Camassa--Holm hierarchy. //Ann. Inst. Fourier (Grenoble)// 67(3): 1185--1230 [[http://dx.doi.org/10.1007/s00033-016-0725-0|DOI]], [[http://arxiv.org/abs/1512.03956v1|arXiv:1512.03956v1]]   * J. Eckhardt, F. Gesztesy, H. Holden, A. Kostenko, G. Teschl. Real-valued algebro-geometric solutions of the two-component Camassa--Holm hierarchy. //Ann. Inst. Fourier (Grenoble)// 67(3): 1185--1230 [[http://dx.doi.org/10.1007/s00033-016-0725-0|DOI]], [[http://arxiv.org/abs/1512.03956v1|arXiv:1512.03956v1]]
   * P. Lindqvist. The time derivative in a singular parabolic equation. //Differential and Integral Equations//30, pp. 795--808 (2017). [[https://arXiv.org/abs/1612.02301|arXiv:1612.02301]]   * P. Lindqvist. The time derivative in a singular parabolic equation. //Differential and Integral Equations//30, pp. 795--808 (2017). [[https://arXiv.org/abs/1612.02301|arXiv:1612.02301]]
   * F. del Teso, J. Endal, and E. R. Jakobsen. On distributional solutions of local and nonlocal problems of porous medium type. //C. R. Acad. Sci. Paris, Ser. I//, 355(11):1154--1160 (2017). [[https://www.sciencedirect.com/science/article/pii/S1631073X17302601|DOI]], [[https://arxiv.org/abs/1706.05306|arXiv:1706.05306]]   * F. del Teso, J. Endal, and E. R. Jakobsen. On distributional solutions of local and nonlocal problems of porous medium type. //C. R. Acad. Sci. Paris, Ser. I//, 355(11):1154--1160 (2017). [[https://www.sciencedirect.com/science/article/pii/S1631073X17302601|DOI]], [[https://arxiv.org/abs/1706.05306|arXiv:1706.05306]]
 +  * U. S. Fjordholm, S. Lanthaler and S. Mishra Statistical solutions of hyperbolic conservation laws: foundations. // Arch. Ration. Mech. Anal. // 226:809-849, 2017 [[https://doi.org/10.1007/s00205-017-1145-9|DOI]], [[http://arxiv.org/abs/1605.05960|arXiv:1605.05960]]
 +
  
 ==== Publications in 2016 ==== ==== Publications in 2016 ====
-  * M. N. Arnesen. Existence of solitary-wave solutions to nonlocal equations. //Discrete and Continuous Dynamical Systems//, vol. 36(7), pp. 3483--3510 (2016). [[http://dx.doi.org/10.3934/dcds.2016.36.3483|DOI]] +  * M. N. Arnesen. Existence of solitary-wave solutions to nonlocal equations. //Discrete and Continuous Dynamical Systems//, vol. 36(7), pp. 3483--3510 (2016). [[http://dx.doi.org/10.3934/dcds.2016.36.3483|DOI]], [[https://arxiv.org/abs/1506.05256|arXiv:1506.05256]] 
-  * K. Varholm, Solitary gravity-capillary water waves with point vortices. //Discrete and Continuous Dynamical Systems//, vol. 36(7), pp. 3927-3959 (2016). [[http://dx.doi.org/10.3934/dcds.2016.36.3927|DOI]] +  * K. Varholm, Solitary gravity-capillary water waves with point vortices. //Discrete and Continuous Dynamical Systems//, vol. 36(7), pp. 3927-3959 (2016). [[http://dx.doi.org/10.3934/dcds.2016.36.3927|DOI]], [[https://arxiv.org/abs/1503.06143|arXiv:1503.06143]] 
-  * T. Kuusi, P. Lindqvist and M. Parviainen. Shadows of Infinities. //Annali di Matematica Pura ed Applicata//, vol. 195 no 4, pp. 1185-1206 (2016). [[http://dx.doi.org/10.1007/s10231-015-0511-1|DOI]]+  * T. Kuusi, P. Lindqvist and M. Parviainen. Shadows of Infinities. //Annali di Matematica Pura ed Applicata//, vol. 195 no 4, pp. 1185-1206 (2016). [[http://dx.doi.org/10.1007/s10231-015-0511-1|DOI]], [[https://arxiv.org/abs/1406.6309|arXiv:1406.6309]]
   * K. Grunert and K.T. Nguyen. On the Burgers--Poisson equation. //J. Differential Equations//, vol. 261 no 6, pp. 3220-3246 (2016). [[http://dx.doi.org/10.1016/j.jde.2016.05.028|DOI]], [[https://arxiv.org/abs/1510.09144|arXiv:1510.09144]]   * K. Grunert and K.T. Nguyen. On the Burgers--Poisson equation. //J. Differential Equations//, vol. 261 no 6, pp. 3220-3246 (2016). [[http://dx.doi.org/10.1016/j.jde.2016.05.028|DOI]], [[https://arxiv.org/abs/1510.09144|arXiv:1510.09144]]
   * K. Grunert. Solutions of the Camassa-Holm equation with accumulating breaking times. //Dynamics of PDE//, vol. 13 no 2, pp. 91-105 (2016). [[http://dx.doi.org/10.4310/DPDE.2016.v13.n2.a1|DOI]], [[https://arxiv.org/abs/1510.09014|arXiv:1510.09014]]   * K. Grunert. Solutions of the Camassa-Holm equation with accumulating breaking times. //Dynamics of PDE//, vol. 13 no 2, pp. 91-105 (2016). [[http://dx.doi.org/10.4310/DPDE.2016.v13.n2.a1|DOI]], [[https://arxiv.org/abs/1510.09014|arXiv:1510.09014]]
Linje 72: Linje 133:
   * R. Colombo and H. Holden. On the Braess paradox with nonlinear dynamics and control theory.// Journal of Optimization Theory and Applications//, vol. 168, pp.  216–230 (2016)  [[http://dx.doi.org/10.1007/s10957-015-0729-5|DOI]], [[https://arxiv.org/abs/1703.09803| arXiv:1703.09803]]    * R. Colombo and H. Holden. On the Braess paradox with nonlinear dynamics and control theory.// Journal of Optimization Theory and Applications//, vol. 168, pp.  216–230 (2016)  [[http://dx.doi.org/10.1007/s10957-015-0729-5|DOI]], [[https://arxiv.org/abs/1703.09803| arXiv:1703.09803]] 
   * K. Grunert and H. Holden. The general peakon-antipeakon solution for the Camassa–Holm equation. // Journal of Hyperbolic Differential Equations //, vol. 13, pp. 353–380  (2016) [[http://www.worldscientific.com/doi/abs/10.1142/S0219891616500119|DOI]],  [[https://arxiv.org/abs/1502.07686v1|arXiv:1502.07686v1]]   * K. Grunert and H. Holden. The general peakon-antipeakon solution for the Camassa–Holm equation. // Journal of Hyperbolic Differential Equations //, vol. 13, pp. 353–380  (2016) [[http://www.worldscientific.com/doi/abs/10.1142/S0219891616500119|DOI]],  [[https://arxiv.org/abs/1502.07686v1|arXiv:1502.07686v1]]
-  * J. Kinnunen and P. Lindqvist. Unbounded supersolutions of some quasilinear parabolic equations. //Nonlinear Analysis//, vol 131, pp. 229-242 (2016). +  * J. Kinnunen and P. Lindqvist. Unbounded supersolutions of some quasilinear parabolic equations. //Nonlinear Analysis//, vol 131, pp. 229-242 (2016). [[https://doi.org/10.1016/j.na.2015.08.016|DOI]], [[https://arxiv.org/abs/1506.00475|arXiv:1506.00475]] 
-  * P. Lindqvist and J. Manfredi. On the mean value property for the p-Laplace equation in the plane. //Proc. Amer. Math. Soc.//, vol. 144 no 1, pp. 143-149 (2016). +  * P. Lindqvist and J. Manfredi. On the mean value property for the p-Laplace equation in the plane. //Proc. Amer. Math. Soc.//, vol. 144 no 1, pp. 143-149 (2016). [[https://doi.org/10.1090/proc/12675|DOI]], [[https://arxiv.org/abs/1409.0241|arXiv:1409.0241]] 
-  * J. Kinnunen, P. Lindqvist, and T. Lukkari. Perron's method for the porous medium equation.  //J. Eur. Math. Soc (JEMS)//, vol 18 no 12, pp. 2953-2969 (2016).+  * J. Kinnunen, P. Lindqvist, and T. Lukkari. Perron's method for the porous medium equation.  //J. Eur. Math. Soc (JEMS)//, vol 18 no 12, pp. 2953-2969 (2016). [[https://doi.org/10.4171/JEMS/658|DOI]] [[https://arxiv.org/abs/1401.4277| arXiv:1401.4277]]
   * P. Lindqvist. [[http://www.springer.com/gp/book/9783319315317|Notes on the Infinity Laplace Equation]].// Springer Briefs in Mathematics,// Bilbao 2016, Springer.     [[http://dx.doi.org/10.1007/978-3-319-31532-4|DOI]], [[https://arxiv.org/abs/1411.1278|arXiv:1411.1278]]   * P. Lindqvist. [[http://www.springer.com/gp/book/9783319315317|Notes on the Infinity Laplace Equation]].// Springer Briefs in Mathematics,// Bilbao 2016, Springer.     [[http://dx.doi.org/10.1007/978-3-319-31532-4|DOI]], [[https://arxiv.org/abs/1411.1278|arXiv:1411.1278]]
   * U. S. Fjordholm. Stability properties of the ENO method. //Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues//, Volume 17, pp. 123-145 (2016). [[http://dx.doi.org/10.1016/bs.hna.2016.09.004|DOI]], [[http://arxiv.org/abs/1609.04178|arXiv:1609.04178]]   * U. S. Fjordholm. Stability properties of the ENO method. //Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues//, Volume 17, pp. 123-145 (2016). [[http://dx.doi.org/10.1016/bs.hna.2016.09.004|DOI]], [[http://arxiv.org/abs/1609.04178|arXiv:1609.04178]]
2019-10-11, Jørgen Endal Letnes