Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
wanp:publications [2019-01-10]
erj
wanp:publications [2019-01-14] (nåværende versjon)
jorgeen [Publications in 2018]
Linje 39: Linje 39:
   * M. Ehrnström and L Pei, Classical well-posedness in dispersive equations with nonlinearities of mild regularity, and a composition theorem in Besov spaces. //J. Evol. Equ.// [[https://​link.springer.com/​article/​10.1007%2Fs00028-018-0435-5|DOI]],​ [[https://​arxiv.org/​abs/​1709.04713|arXiv:​1709.04713]]   * M. Ehrnström and L Pei, Classical well-posedness in dispersive equations with nonlinearities of mild regularity, and a composition theorem in Besov spaces. //J. Evol. Equ.// [[https://​link.springer.com/​article/​10.1007%2Fs00028-018-0435-5|DOI]],​ [[https://​arxiv.org/​abs/​1709.04713|arXiv:​1709.04713]]
   * F. del Teso, J. Endal, and E. R. Jakobsen. On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://​www.ems-ph.org/​books/​book.php?​proj_nr=231&​srch=series%7Cecr|DOI]],​ [[https://​arxiv.org/​abs/​1610.02221|arXiv:​1610.02221]]   * F. del Teso, J. Endal, and E. R. Jakobsen. On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://​www.ems-ph.org/​books/​book.php?​proj_nr=231&​srch=series%7Cecr|DOI]],​ [[https://​arxiv.org/​abs/​1610.02221|arXiv:​1610.02221]]
-  * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. ​To appear in //​SIAM ​Journal on Numerical Analysis,// (2018). [[https://​arxiv.org/​abs/​1804.04985|arXiv:​1804.04985]]+  * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. //​SIAM ​J. Numer. Anal.//, 56(6) (2018) ​3611-3647. [[https://​arxiv.org/​abs/​1804.04985|arXiv:​1804.04985]] ​[[https://​doi.org/​10.1137/​18M1180748|DOI]].
   * P. Lindqvist, D. Ricciotti. Regularity for an anisotropic equation in the plane.//​Nonlinear Analysis.//​177 (2018), pp. 628-636.[[https://​arxiv.org/​abs/​1801.08661|arXiv:​1801.08661]]   * P. Lindqvist, D. Ricciotti. Regularity for an anisotropic equation in the plane.//​Nonlinear Analysis.//​177 (2018), pp. 628-636.[[https://​arxiv.org/​abs/​1801.08661|arXiv:​1801.08661]]
   * H. Holden and N. H. Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill–Whitham–Richards model for traffic flow. //Networks and Heterogeneous Media    * H. Holden and N. H. Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill–Whitham–Richards model for traffic flow. //Networks and Heterogeneous Media 
2019-01-14, Jørgen Endal