Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
Neste revisjon
Forrige revisjon
wanp:publications [2019-01-14]
jorgeen [Publications in 2018]
wanp:publications [2019-04-24] (nåværende versjon)
katring
Linje 2: Linje 2:
  
 ==== Preprints ==== ==== Preprints ====
 +  * J. A. Carrillo, K. Grunert, and H. Holden. A Lipschitz metric for the Camassa-Holm equation. //Submitted for publication.//​ (2019) ​ [[https://​arxiv.org/​abs/​1904.02552|arXiv:​1904.02552]]
   * I. H. Biswas, I. Chowdhury, and E. R. Jakobsen. On the rate of convergence for monotone numerical schemes for nonlocal Isaacs equations. //Submitted for publication.//​ (2017) [[https://​arxiv.org/​abs/​1709.07743|arXiv:​1709.07743]]   * I. H. Biswas, I. Chowdhury, and E. R. Jakobsen. On the rate of convergence for monotone numerical schemes for nonlocal Isaacs equations. //Submitted for publication.//​ (2017) [[https://​arxiv.org/​abs/​1709.07743|arXiv:​1709.07743]]
   * N. Alibaud, J. Endal, and E. R. Jakobsen. Optimal and dual stability results for L1 viscosity and L-infinity entropy solutions. //Submitted for publication.//​ (2018) [[https://​arxiv.org/​abs/​1812.02058|arXiv:​1812.02058]]   * N. Alibaud, J. Endal, and E. R. Jakobsen. Optimal and dual stability results for L1 viscosity and L-infinity entropy solutions. //Submitted for publication.//​ (2018) [[https://​arxiv.org/​abs/​1812.02058|arXiv:​1812.02058]]
Linje 15: Linje 16:
   * M. Ehrnström and E. Wahlén. On Whitham'​s conjecture of a highest cusped wave for a nonlocal shallow water wave equation. Accepted for publication in //Ann. Inst. H. Poincaré Anal. Non Linéaire// (2018). [[http://​arxiv.org/​abs/​1602.05384|arXiv:​1602.05384]]   * M. Ehrnström and E. Wahlén. On Whitham'​s conjecture of a highest cusped wave for a nonlocal shallow water wave equation. Accepted for publication in //Ann. Inst. H. Poincaré Anal. Non Linéaire// (2018). [[http://​arxiv.org/​abs/​1602.05384|arXiv:​1602.05384]]
   * U. S. Fjordholm, S. Lanthaler and S. Mishra. Statistical solutions of hyperbolic conservation laws I: Foundations. //To appear in ARMA// (2017). [[http://​arxiv.org/​abs/​1605.05960|arXiv:​1605.05960]]   * U. S. Fjordholm, S. Lanthaler and S. Mishra. Statistical solutions of hyperbolic conservation laws I: Foundations. //To appear in ARMA// (2017). [[http://​arxiv.org/​abs/​1605.05960|arXiv:​1605.05960]]
-  * J. A. Carrillo, K. Grunert, and H. Holden. A Lipschitz metric for the Hunter-Saxton equation. //To appear in //Comm. Partial Differential Equations. ​ [[https://​arxiv.org/​abs/​1612.02961|arXiv:​1612.02961]] 
   * H. Hanche-Olsen,​ H. Holden, E.Malinnikova. An improvement of the Kolmogorov--Riesz compactness theorem. [[https://​arxiv.org/​abs/​1705.01349|arXiv:​1705.01349v1]]   * H. Hanche-Olsen,​ H. Holden, E.Malinnikova. An improvement of the Kolmogorov--Riesz compactness theorem. [[https://​arxiv.org/​abs/​1705.01349|arXiv:​1705.01349v1]]
   * U. S. Fjordholm and E. Wiedemann. Statistical solutions and Onsager'​s conjecture. //Submitted for publication//​ (2017). [[http://​arxiv.org/​abs/​1706.04113|arXiv:​1706.04113]]   * U. S. Fjordholm and E. Wiedemann. Statistical solutions and Onsager'​s conjecture. //Submitted for publication//​ (2017). [[http://​arxiv.org/​abs/​1706.04113|arXiv:​1706.04113]]
-  * J. Kinnunen, P. Lehtela",​ P. Lindqvist, M. Parviainen. Supercaloric Functions for the Porous Medium Equation. ​To appear in Journal of Evolution Equations {{ :​wanp:​jee.pdf |}}.+  * J. Kinnunen, P. Lehtela",​ P. Lindqvist, M. Parviainen. Supercaloric Functions for the Porous Medium Equation. ​ Journal of Evolution Equations ​19 (2019), pp. 249-270 ​{{ :​wanp:​jee.pdf |}}.
   * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory. //Submitted for publication,//​ 2018. [[https://​arxiv.org/​abs/​1801.07148|arXiv:​1801.07148]]   * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory. //Submitted for publication,//​ 2018. [[https://​arxiv.org/​abs/​1801.07148|arXiv:​1801.07148]]
   * N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen. Characterization of nonlocal diffusion operators satisfying the Liouville theorem. Irrational numbers and subgroups of R^d. //Preprint available,//​ 2018. [[https://​arxiv.org/​abs/​1807.01843|arXiv:​1807.01843]]   * N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen. Characterization of nonlocal diffusion operators satisfying the Liouville theorem. Irrational numbers and subgroups of R^d. //Preprint available,//​ 2018. [[https://​arxiv.org/​abs/​1807.01843|arXiv:​1807.01843]]
Linje 25: Linje 25:
   * E. Lindgren, P. Lindqvist: Infinity-Harmonic Potentials and Their Streamlines. [[https://​arxiv.org/​abs/​1809.08130|arxiv:​1809.08130]]   * E. Lindgren, P. Lindqvist: Infinity-Harmonic Potentials and Their Streamlines. [[https://​arxiv.org/​abs/​1809.08130|arxiv:​1809.08130]]
   * P. Lindqvist, M. Parviainen: A remark on infinite initial values for quasilinear parabolic equations. To appear in Journal of Nonlinear Analysis. [[https://​arxiv.org/​abs/​1811.11541|arxiv:​1811.11541]]   * P. Lindqvist, M. Parviainen: A remark on infinite initial values for quasilinear parabolic equations. To appear in Journal of Nonlinear Analysis. [[https://​arxiv.org/​abs/​1811.11541|arxiv:​1811.11541]]
 +
 +==== Publications in 2019 ====
 +  * J. A. Carrillo, K. Grunert, and H. Holden. A Lipschitz metric for the Hunter-Saxton equation. // Comm. Partial Differential Equations.//​ 44(4): 309-334, 2019. [[https://​doi.org/​10.1080/​03605302.2018.1547744|DOI]], ​  ​[[https://​arxiv.org/​abs/​1612.02961|arXiv:​1612.02961]]
  
 ==== Publications in 2018 ==== ==== Publications in 2018 ====
2019-01-14, Jørgen Endal