Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
Neste revisjon
Forrige revisjon
Neste revisjon Begge sider neste revisjon
wanp:publications [2019-01-10]
erj
wanp:publications [2019-01-14]
jorgeen [Publications in 2018]
Linje 27: Linje 27:
  
 ==== Publications in 2018 ==== ==== Publications in 2018 ====
 +  * L. Chen and E. R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated with general Levy driven SDEs. //Discrete Contin. Dyn. Syst.// 38(11): 5735-5763, 2018. [[http://dx.doi.org/10.3934/dcds.2018250|DOI]]
 +  * L. Chen, E. R. Jakobsen, and A. Naess. On numerical density approximations of solutions of SDEs with unbounded coefficients. //Adv. Comput. Math.// 44(3): 693-721, 2018. [[http://dx.doi.org/10.1007/s10444-017-9558-4|DOI]], [[http://arxiv.org/abs/1506.05576|arXiv:1506.05576]]
   * H.-L. Li, Y. Wang, and Z. Xin. Non-existence of classical solutions with finite energy to the Cauchy problem of the compressible Navier–Stokes equations //Arch. Rational Mech. Anal.// (2018). [[https://doi.org/10.1007/s00205-018-1328-z|DOI]].   * H.-L. Li, Y. Wang, and Z. Xin. Non-existence of classical solutions with finite energy to the Cauchy problem of the compressible Navier–Stokes equations //Arch. Rational Mech. Anal.// (2018). [[https://doi.org/10.1007/s00205-018-1328-z|DOI]].
   * H.-L. Li and Y. Wang.  Formation of singularities of spherically symmetric solutions to the 3D compressible Euler equations and Euler-Poisson equations. //Nonlinear Differ. Equ. Appl.// 25 (2018). [[https://doi.org/10.1007/s00030-018-0534-6|DOI]].   * H.-L. Li and Y. Wang.  Formation of singularities of spherically symmetric solutions to the 3D compressible Euler equations and Euler-Poisson equations. //Nonlinear Differ. Equ. Appl.// 25 (2018). [[https://doi.org/10.1007/s00030-018-0534-6|DOI]].
Linje 37: Linje 39:
   * M. Ehrnström and L Pei, Classical well-posedness in dispersive equations with nonlinearities of mild regularity, and a composition theorem in Besov spaces. //J. Evol. Equ.// [[https://link.springer.com/article/10.1007%2Fs00028-018-0435-5|DOI]], [[https://arxiv.org/abs/1709.04713|arXiv:1709.04713]]   * M. Ehrnström and L Pei, Classical well-posedness in dispersive equations with nonlinearities of mild regularity, and a composition theorem in Besov spaces. //J. Evol. Equ.// [[https://link.springer.com/article/10.1007%2Fs00028-018-0435-5|DOI]], [[https://arxiv.org/abs/1709.04713|arXiv:1709.04713]]
   * F. del Teso, J. Endal, and E. R. Jakobsen. On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://www.ems-ph.org/books/book.php?proj_nr=231&srch=series%7Cecr|DOI]], [[https://arxiv.org/abs/1610.02221|arXiv:1610.02221]]   * F. del Teso, J. Endal, and E. R. Jakobsen. On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type. //EMS Series of Congress Reports: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. The Helge Holden Anniversary Volume// (2018). [[http://www.ems-ph.org/books/book.php?proj_nr=231&srch=series%7Cecr|DOI]], [[https://arxiv.org/abs/1610.02221|arXiv:1610.02221]]
-  * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. To appear in //SIAM Journal on Numerical Analysis,// (2018). [[https://arxiv.org/abs/1804.04985|arXiv:1804.04985]]+  * F. del Teso, J. Endal, and E. R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. //SIAM J. Numer. Anal.//, 56(6) (2018) 3611-3647. [[https://arxiv.org/abs/1804.04985|arXiv:1804.04985]] [[https://doi.org/10.1137/18M1180748|DOI]].
   * P. Lindqvist, D. Ricciotti. Regularity for an anisotropic equation in the plane.//Nonlinear Analysis.//177 (2018), pp. 628-636.[[https://arxiv.org/abs/1801.08661|arXiv:1801.08661]]   * P. Lindqvist, D. Ricciotti. Regularity for an anisotropic equation in the plane.//Nonlinear Analysis.//177 (2018), pp. 628-636.[[https://arxiv.org/abs/1801.08661|arXiv:1801.08661]]
   * H. Holden and N. H. Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill–Whitham–Richards model for traffic flow. //Networks and Heterogeneous Media    * H. Holden and N. H. Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill–Whitham–Richards model for traffic flow. //Networks and Heterogeneous Media 
Linje 45: Linje 47:
 ==== Publications in 2017 ==== ==== Publications in 2017 ====
   * G. Bruell, M. Ehrnström, A. Geyer and L. Pei, Symmetric solutions of evolutionary partial differential equations. //Nonlinearity//, 30, no.10: pp 3932--3950 (2017). [[https://arxiv.org/abs/arXiv:1704.05483|arXiv:1704.05483]]   * G. Bruell, M. Ehrnström, A. Geyer and L. Pei, Symmetric solutions of evolutionary partial differential equations. //Nonlinearity//, 30, no.10: pp 3932--3950 (2017). [[https://arxiv.org/abs/arXiv:1704.05483|arXiv:1704.05483]]
-  * L. Chen, E. R. Jakobsen, and A. Naess. On numerical density approximations of solutions of SDEs with unbounded coefficients. //Adv. Comput. Math.//, Online First, pp 1-29, 2017. [[http://dx.doi.org/10.1007/s10444-017-9558-4|DOI]], [[http://arxiv.org/abs/1506.05576|arXiv:1506.05576]] 
   * G. Bruell, M. Ehrnström and L. Pei. Symmetry and decay of traveling wave solutions to the Whitham equation. // J. Differential Equations // 262(8): pp 4232--4254 (2017). [[https://arxiv.org/abs/1608.07944|arXiv:1608.07944]]   * G. Bruell, M. Ehrnström and L. Pei. Symmetry and decay of traveling wave solutions to the Whitham equation. // J. Differential Equations // 262(8): pp 4232--4254 (2017). [[https://arxiv.org/abs/1608.07944|arXiv:1608.07944]]
   * A. Aasen and K. Varholm, Traveling gravity water waves with critical layers. //Journal of Mathematical Fluid Mechanics// (2017). [[https://link.springer.com/article/10.1007/s00021-017-0316-7|Online first]]   * A. Aasen and K. Varholm, Traveling gravity water waves with critical layers. //Journal of Mathematical Fluid Mechanics// (2017). [[https://link.springer.com/article/10.1007/s00021-017-0316-7|Online first]]
2022-09-22, matthewt