TMA4300 Computer Intensive Statistical Methods spring 2021

Lecture log

Below you find an overview of what we have discussed in each lecture. This overview will be updated after each lecture.

Week Date Topics Slides R code Reading Extra material
2 12.01 Intro to the course. Simulation of discrete RV Slides Intro to R, Pseudo random number, Simulate a queue GL: 1.1-1.2-1.3.1, GH: 1 (repetition)
2 14.01 Bivariate techniques (Box-Muller algorithm), ratio-of-uniforms method Slides GL: 1.3.2, GH: 6-6.2.2
3 19.01 Methods based on mixtures, multivariate Normal, Rejection sampling Slides GL: 1. 4, 1.5.1, GH:6.2.2, 6.2.3
3 21.01 Rejection sampling, adaptive rejection sampling, Monte Carlo integration, importance sampling Slides GL: 1.5 (all), GH: 6.2.3 (all), 6.3.1, 6.4.1
3 22.01 More on importance sampling Slides
4 26.01 Intro to Bayesian statistics Slides here is a series of video about Jeffrey's prior
6 11.02 More bayesian statistics, MCMC Slides Toy Example with MCMC GL: 6.1-6.2, GH: 7.1
6 12.02 The Metropolis-Hastings algorithm and Gibbs sampler Slides GL: 6.4, 5.1, 5.2, GH: 7.1-7.2
7 18.02 MCMC and Gibbs sampler Slides GL:5.3,5.3, GH:7.2,7.3
8 23.02 MCMC and GIbbsa sampler. Convergence diagnostic, INLA Slides https://arxiv.org/abs/1907.01248
9 02.03 INLA Slides
9 04.03 R-INLA Slides
10 12.03 Bootstrap Slides GH: 9.1, 9.2
11 18.03 Bootstrap Slides
12 23.03 Bootstrap and permutation test Slides GH: 9.3.1, 9.5.1, 9.5.2 (until 9.5.2.3 included A visual introduction to permutation test
12 26.03 EM algorithm Slides
27.04 Summary Slides
2021-04-27, Sara Martino