TMA4255 Applied Statistics, spring 2012

Lectures

Lectures: Thursday 12.15-14.00 in R10*
Friday 14.15-16.00 in F2

First lecture is Thursday January 12. *=except for 02.02.2012, then we are in F3.

Detailed plan with handouts

(for tentative overview scroll down)
1up="one slide pr page", 2up="two slides pr page", 4up="four slides pr page".
NBNB: the reading list is based on the WMMY book. The slides are used in the lectures and can not replace READING the literature on the reading list.

Date Part Chapter Topic Handouts Data Additional activity/notes
24+25 19.04.12+20.04.12 1-7 The course 1up 2up 4up
23 13.04.12 7 16.3, p133-135 Wilcoxon Rank-sum test, approximation to E and Var 1up 2up 4up balance.MTW, balance.txt Nonparametric tests
22 12.04.12 7 16.1-16.2 Nonparametric tests (sign, sign-ranked) 1up 2up 4up
X 30.03.12 - - No lecture. Deadline for handing in the DOE project
21 29.03.12 6 10.12-10.13 Chisquare tests, Simpsons paradox 1up 2up 4up Test of association
20 23.03.12 5, 6 17.5, 10.11 Control charts for attributes, goodness of fit tests 1up 2up 4upfeilbrikker.MTW, feilbrikker.txt sjukefravere.MTW, sjukefravere.txt Control chart examples
19 22.03.12 5 17.1-17.3 Statistical process control, control charts for variables 1up 2up 4up metalltjukkleik.MTW, metalltjukkleik.txt
18 16.03.12 4 14.1-14.3 Two-way ANOVA 1up 2up 4up eysenck.txt, eysenck.MTW
17 15.03.12 4 13.6-13.8 Multiple tests, block designs 1up 2up 4up R script Tukey example, R script machine example
16 09.03.12 4 13.3, 13.4, 13.6 One way ANOVA: homogeneity of variances and multiple tests 1up 2up 4up
15 08.03.12 4 13.1-13.3 One way ANOVA 1up 2up 4up aggregates.MTW R script for aggregatesProof thm 13.2(pdf) ANOVA (pdf)
X 02.03.12, 14-16 in F2 3 DOE No lecture, but instead supervision of compulsory project
X 01.03.12, 12-14 in R10 3 DOE No lecture, but instead supervision of compulsory project
14 24.02.12 3 BHH Ch 12.2-12.6 Fractional factorial designs 1up 2up 4up BHHreactor16.MTW BHHreactor32.MTW R script for BHHreactor
13 23.02.12 3 Note p 13-17,BHH 12.1-12.2 Blocking, fractional factorial designs 1up 2up 4up pilotdata8blokk.MTW, R script blocking with pilot plant Box, Hunter and Hunter Chapter 12 (pdf)
12 17.02.12 3 p7-13 2ink, Variance, inference 1up 2up 4up limabeans.MTW R script lima beans Seed to Plant compulsory project example (pdf)
11 16.02.12 3 Note p 1-7 Orthonality, Effects, 2in3 1up 2up 4up R script for pilot example DOE in MINITAB
10 10.02.12 2-3 DOE note p1-3, 12.7 Slides 14-18+26-31from yesterday (1hrs) and then 1hrs of Design of Experiments (DOE), factorial experiments 1up 2up 4up Notat: Factorial experiments at two levels
9 09.02.12 2 12.6-7, 12.9, 12.11 Model selection, subsets and orthogonality 1up 2up 4upacidrain.MTW (MINITAB), acidrain.txt (R), acid.r (R script to analyse acid rain data)
8 03.02.12 2 12.4-12.6, 12.10 MLR ANOVA, prediction, residuals 1up 2up 4upwrongmodelMLR.r (R script to simulate data for the wrong model example)
7 02.02.12 2 12.1-12.4 The multiple linear regression model - including matrix notation, least squares estimators 1up 2up 4upswiss.MTW (MINITAB) and available in R as swiss R script
6 27.01.11 2 11.5-11.8 Simple linear regression: inference, prediction1up 2up 4upaswan.MTW (MINITAB) and aswan.txt (R)
5 26.01.12 2 11.1-11.4, 11.5, 11.8 Simple linear regression, sum of squares 1up 2up 4upstiffdens.MTW (MINITAB) and stiffdens.txt (R) Linear regression
4 20.01.12 1 8.7, 9.8, 10.5, 10.10 Two sample t-test, F-distribution, F-test 1up 2up 4upfusiontime.MTW (MINITAB) and fusiontime.txt (R) FusionTimeData Comparing means
3 19.01.12 1 8.6, 9.4, 10.1-10.4 Hypothesis testing, t-distribution, t-test, confidence interval 1up 2up 4up LDLds.MTW (MINITAB) and LDLds.txt (R) Hypothesis testing and p-values
2 14.01.11 1 1-7, 8.8, 8.1-8.5 Repetitions, normal plot, sampling distributions 1up 2up 4up LDLbeforeafter.csv, MINITAB intro Presenting data, Population and sample
1 12.01.11 1 1-7, 8.1-8.3 Introduction - course and topics, use of software 1up 2up 4up

Tentative lecture plan

Weeek Chapter Topic Exercise
2-3 8-10 Introduction. One and two sample inference based on normal data 1+2
4-5-6 11-12 Linear regression 3+4+5
6-7-8 Design of experiments 6+7
9 Compulsory individual project
10-11 13-14 Analysis of variance 8+9
12 17 Statistical process control 10
12-13 10 Statistical analysis of contingency tables
14 Easter break
15 16,4 Nonparametric statistics 11
16 Summing up and concluding remarks, exam preparation
2012-04-16, mettela