# Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

 tma4212:2019v:time_schedule [2019-04-10]anne [Timetable] tma4212:2019v:time_schedule [2019-05-07] (nåværende versjon)anne [Timetable] Begge sider forrige revisjon Forrige revisjon 2019-05-07 anne [Timetable] 2019-04-10 anne [Timetable] 2019-04-10 anne [Timetable] 2019-04-10 anne [Timetable] 2019-04-10 anne [Timetable] 2019-03-13 anne [Timetable] 2019-03-13 anne [Timetable] 2019-03-13 anne [Timetable] 2019-03-13 anne [Timetable] 2019-02-21 anne [Timetable] 2019-02-21 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne 2019-01-31 anne 2019-01-17 anne [Timetable] 2019-01-04 anne 2019-01-04 anne 2019-01-04 anne 2019-01-04 anne [Timetable] 2019-01-04 anne opprettet 2019-05-07 anne [Timetable] 2019-04-10 anne [Timetable] 2019-04-10 anne [Timetable] 2019-04-10 anne [Timetable] 2019-04-10 anne [Timetable] 2019-03-13 anne [Timetable] 2019-03-13 anne [Timetable] 2019-03-13 anne [Timetable] 2019-03-13 anne [Timetable] 2019-02-21 anne [Timetable] 2019-02-21 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne [Timetable] 2019-02-07 anne 2019-01-31 anne 2019-01-17 anne [Timetable] 2019-01-04 anne 2019-01-04 anne 2019-01-04 anne 2019-01-04 anne [Timetable] 2019-01-04 anne opprettet Linje 14: Linje 14: ^ 6 | Elliptic equations \\ Model: The Poisson equation | BO section 6.1-6.2 and 6.9-10. \\ The 5-point formula for the Poisson equation. The discrete maximum principle and a convergence of the 5-point formula. | August 2014, problem 2. June 2014, problem 2. June 2010, problem 1. | ^ 6 | Elliptic equations \\ Model: The Poisson equation | BO section 6.1-6.2 and 6.9-10. \\ The 5-point formula for the Poisson equation. The discrete maximum principle and a convergence of the 5-point formula. | August 2014, problem 2. June 2014, problem 2. June 2010, problem 1. | ^ 7 |  | BO section 6.3-6.5. Discretisation on boundaries. \\   | | ^ 7 |  | BO section 6.3-6.5. Discretisation on boundaries. \\   | | - ^ 8 | Hyperbolic problems \\ Model: The wave equation and the transport equation. ​ | BO section 6.6-6.9. Discretisation on irregular grid. Box-integration. \\ BO 7.1 and 7.2 Hyperbolic equations. \\ Examples. Characteristics. Conservation laws. | June 2018, problem 1. May 2016, problem 2. May 2015, problem 1. August 2014, problem 4. June 2014, problem 4. June 2012, problem 3. | + ^ 8 | Hyperbolic problems \\ Model: The wave equation and the transport equation. ​ | BO section 6.6-6.9. Discretisation on irregular grid. Box-integration. \\ BO 7.1 and 7.2 Hyperbolic equations. \\ Examples. Characteristics. Conservation laws. | June 2018, problem 1. May 2016, problem 2.  August 2014, problem 4. June 2014, problem 4. June 2012, problem 3. | ^ 9 | Project release \\ some time during the week. | BO section 7.3 - 7.7  | | | ^ 9 | Project release \\ some time during the week. | BO section 7.3 - 7.7  | | | ^ 10 | Finite element methods | CC section 1, 2.1-2.2, 3.1, 5.1, 5.2 \\ Setting up the variational problem, Galerkins method, mesh, and basis functions for FEM in 1 and 2 dimensions. | June 2018, problem 3.  May 2016, problem 1. May 2015, problem 4.  | ^ 10 | Finite element methods | CC section 1, 2.1-2.2, 3.1, 5.1, 5.2 \\ Setting up the variational problem, Galerkins method, mesh, and basis functions for FEM in 1 and 2 dimensions. | June 2018, problem 3.  May 2016, problem 1. May 2015, problem 4.  | ^ 11 | | CC section 2.3-2.6, \\ Boundary conditions and the assembly process in 1D. |  | ^ 11 | | CC section 2.3-2.6, \\ Boundary conditions and the assembly process in 1D. |  | ^ 12 | | CC section 3 and 4: Existence and uniqueness of the variational form. Convergence. ​ | May 2017, problem 1. | ^ 12 | | CC section 3 and 4: Existence and uniqueness of the variational form. Convergence. ​ | May 2017, problem 1. | - ^ 13 | | CC section 5.3-5: More on 2D-problems. ​ | June 2012, problem 4.| + ^ 13 | | CC section 5.3-5: More on 2D-problems. ​ | May 2015, problem 1. June 2012, problem 4.| ^ 14 | Project presentations. | | | ^ 14 | Project presentations. | | | ^ 15 | Numerical linear algebra | Classical iterative techniques: Jacobi, Gauss-Seidel,​ SOR. \\  [[http://​epubs.siam.org/​doi/​book/​10.1137/​1.9780898717938 | Strikwerda]],​ chapter 13.1-3 or [[https://​link.springer.com/​book/​10.1007/​b98885 | Quarteroni et.al. ]] chapter 4.2.1-2. \\ Line search methods: Steepest descent and the conjugate gradient method. \\ Strikwerda chapter 14.1-3 or Quarteroni et.al. chapter 4.3.3-4. \\ Focus on the idea of the methods, convergence criterias (no proofs) and how they can be implemented for discretized PDEs.   | May 2017, problem 3. June 2014, problem 3. May 2013, problem 2. August 2013, problem 2c). | ^ 15 | Numerical linear algebra | Classical iterative techniques: Jacobi, Gauss-Seidel,​ SOR. \\  [[http://​epubs.siam.org/​doi/​book/​10.1137/​1.9780898717938 | Strikwerda]],​ chapter 13.1-3 or [[https://​link.springer.com/​book/​10.1007/​b98885 | Quarteroni et.al. ]] chapter 4.2.1-2. \\ Line search methods: Steepest descent and the conjugate gradient method. \\ Strikwerda chapter 14.1-3 or Quarteroni et.al. chapter 4.3.3-4. \\ Focus on the idea of the methods, convergence criterias (no proofs) and how they can be implemented for discretized PDEs.   | May 2017, problem 3. June 2014, problem 3. May 2013, problem 2. August 2013, problem 2c). |