TMA4170 Fourier Analysis - Spring 2022
Lecturer
- Email: carlos.a.c.chavez@ntnu.no
- Office: 902
- Personal webpage: https://sites.google.com/view/andreschirre/
Messages
- 06/01 The lectures will be in Zoom (at least the first weeks). These classes will be recorded.
- 06/01 Join Zoom Meeting: Carlos Andrés Chirre Chávez is inviting you to a scheduled Zoom meeting:
https://NTNU.zoom.us/j/92139246758?pwd=YnQxcDMxQVJCRHNYVjZwUG1tM0d3dz09
Meeting ID: 921 3924 6758
Passcode: 392329.
- 07/01 The first lecture will be on Monday 10 at 12:15pm.
- 10/01 Schedule of the course:
- Monday: 12:15pm - 14:00pm
- Tuesday: 8:15am - 10:00am
- 10/01 Reference group
- 11/01 Office hours: Wednesday 16:00pm-18:00pm
- 18/01 The next class we will start the physical lectures.
- Monday 24 January: VE1
- Tuesday 25 January: Smia
- Monday 31 January: R5
- Tuesday 1 February: S6
- 31/01 Office hours (additional): Friday 17:00pm-18:00pm
- 15/02 Reference group:
- Trygve Johan Tegnander: tjtegnan@stud.ntnu.no
- Robin Lien: robinol@stud.ntnu.no
Send a message to one (or both) of the members of the reference group talking about the lectures. - 25/04 Final session of exercises and Office hours (see below, no recorded).
Lecture notes and problem lists
a) 06/01 Read Section 1 of the Appendix: Integration, in the textbook (pp. 281-289).
b) 06/01 To justify the change of variable in Riemann integration, see: https://www.jstor.org/stable/3614765?seq=1#metadata_info_tab_contents
c) 06/01 Exercises in Chapter 1: 1, 2, 3, 4, 5, 6, 7, 8.
d) 11/01 Problem_set_1
e) 24/01 Problem_set_2
f) 15/02 Problem_set_3
g) 18/03 Problem_set_4
h) 10/04 Problem_set_5
Extra-solutions
a) Solution_35
b) Solution_36
c) Solution_43_44
d) Solution_52
e) Solution_67_68_69a
f) Solution_73
g) Solution_81
Final exam 2021
Textbook
- Fourier Analysis: An Introduction, Elias M. Stein and Rami Shakarchi. Princeton Lectures in Analysis I. Princeton University Press, 2003.
- Complex Analysis, Elias M. Stein and Rami Shakarchi. Princeton Lectures in Analysis II. Princeton University Press, 2003.
Syllabus
- Fourier series
- Convergence of Fourier series
- Applications of Fourier series
- The Fourier transform on R
- The Riemann zeta-function
- The Heisenberg Uncertainty principle
- Paley-Wiener Theorem
- Interpolation formulas
Classroom
W2: Introduction to Fourier series and examples
- 10/01 Class1: Chapter 2 FourierAnalysis_class1
No video: Technical problems
W3: Uniqueness of the Fourier series
- 18/01 Class 4: Chapter 2 FourierAnalysis_class4
No video: Technical problems - 19/01 Office hours by zoom Office_hours_zoom
W4: Convolution and good kernels
- 24/01 Class 5: Chapter 2
Video: Video_class5 - 25/01 Class 6: Chapter 2
Video: Video_class6
W5: Vector spaces and best approximation
- 31/01 Class 7: Chapter 3
Video: Video_class7 - 01/02 Class 8: Chapter 3
Video: Video_class8 - 02/02 Office hours by zoom Office_hours_zoom
W6: Convergence in norm and Parseval's identity
- 07/02 Class 9: Chapter 3
Video: Video_class9 - 08/02 Class 10: Chapter 3
Video: Video_class10
W7: Application: equidistribution of real numbers
- 15/02 Class 12: Chapter 4
Video: Video_class12
W8: Fourier transform I-II
- 22/02 Class 14: Chapter 5
Video: Video_class14 Technical problems in the ending.
W9: Fourier transform III-IV
- 01/03 Class 16: Chapter 5
Video: Video_class16
W10: Fourier transform: Fourier inversion formula and Plancherel formula
- 08/03 Class 18: Chapter 5
Video: Video_class18
W11: Poisson summation formula and the Gamma-function
- 15/03 Class 20:
Video: Video_class20
W12: The Riemann zeta-function
- 22/03 Class 22:
Video: Video_class22
W13: Uncertainty principle and the Paley-Wiener Theorem
- 29/03 Class 24:
Video: Video_class24
W14: Paley-Wiener theorem and Shannon interpolation formula
- 05/04 Class 26:
Video: Video_class26
W15: Easter
W16: Vaaler interpolation formula
- 19/04 Class 27:
Video: Video_class27
W17: Vaaler interpolation formula
W18: Session of exercises
- 03/05 Time: 8:15am-10:00 am, Room: S6
W19: Office hours
- 16/05 Time: 14:00pm-16:00pm