TMA4170 Fourier Analysis - Spring 2021
Lecturer
- Email: carlos.a.c.chavez@ntnu.no
- Office: 902
- Personal webpage: https://sites.google.com/view/andreschirre/
Messages
- 12/01 The lectures will be in Zoom (at least this first week).
- 12/01 Date and time:
Tuesdays, 8:15-10:00,
Thursdays, 10:15-12:00,
Thursdays, 16:15-17:00 (By zoom)
- 12/01 Join Zoom Meeting: Carlos Andrés Chirre Chávez is inviting you to a scheduled Zoom meeting:
https://NTNU.zoom.us/j/92139246758?pwd=YnQxcDMxQVJCRHNYVjZwUG1tM0d3dz09
Meeting ID: 921 3924 6758
Passcode: 392329.
- 14/01 Reference group: Send me a message if you want to be the reference group in the course.
- 01/02 This week our class is still by Zoom.
- 04/02 First lecture in F2: Tuesday 09/02
- 09/02 First physical lecture in F2, and also broadcast live by zoom.
- 10/02 Time of exercises for Thursday 11: 16:00-17:00 hour office (948) (CANCELLED), and by zoom 17:00-17:45.
- 10/02 CANCELLATION of the second physical lecture. We will have our classes by zoom.
- 16/02: Reference Group:
Markus Valås Hagen (markus.v.hagen@ntnu.no)
Emil Gautesen (emilga@stud.ntnu.no)
First meeting: 22/02 - 18/02 Jamboard link (17nd class): https://jamboard.google.com/d/1MZYo6Vle9punnIO6NDGvD-4ANnMB9_AiUATiBF2bne4/edit?usp=sharing
- 23/02: Second physical lecture in F2 in 23/02, and also broadcast live by zoom.
- 04/03: Exercises time each Thursday 16:15-17:00, by zoom.
- 23/03: The final topic that we will discuss will be interpolation formulas.
- 24/03: CANCELLATION of the physical lecture tomorrow. We will have our classes by zoom.
- 15/04 Jamboard link (38nd class): https://jamboard.google.com/d/1FeWRfL6AOcjJsX_fEWLajnfSawO9YRUJGhOfatSlcl0/edit?usp=sharing
- 20/04: The final classes (from now) will be physical.
- 21/05: The final exam and its solution are enabled (see below).
- 09/08: The oral exam will be 12 Thursday. It will be on zoom and the language will be English. The students that can take this exam have received a message with the necessary information.
Lecture notes and problem lists
a) 12/01 Read Section 1 of the Appendix: Integration, in the textbook (pp. 281-289).
b) 12/01 To justify the change of variable in Riemann integration, see: https://www.jstor.org/stable/3614765?seq=1#metadata_info_tab_contents
c) 12/01 Exercises in Chapter 1: 1, 2, 3, 4, 5, 6, 7, 8.
d) 14/01 Problem_set_1
e) 31/01 Problem_set_2
f) 21/02 Problem_set_3
g) 15/03 Problem_set_4
h) 08/04 Problem_set_5
i) 22/04 Problem_set_6
j) 26/04 Notes on complex analysis
Final exam
*Exam
Textbook
- Fourier Analysis: An Introduction, Elias M. Stein and Rami Shakarchi. Princeton Lectures in Analysis I. Princeton University Press, 2003. (FAAI)
- Complex Analysis, Elias M. Stein and Rami Shakarchi. Princeton Lectures in Analysis II. Princeton University Press, 2003. (CA)
Syllabus
- Fourier series (FAAI)
- Convergence of Fourier series (FAAI)
- Applications of Fourier series (FAAI)
- The Fourier transform on R (FAAI)
- The Riemann zeta-function (FAAI-CA)
- The Heisenberg Uncertainty principle (FAAI)
- Paley-Wiener Theorem (CA)
- Interpolation formulas
Classroom
First week: Introduction to Fourier series and examples
- 12/01 Class1: Chapter 2 FourierAnalysis_class1_12_01_2021
- 14/01 Class2: Chapter 2 FourierAnalysis_class2_14_01_2021
- 14/01 Class3: FourierAnalysis_exercises3_14_01_2021 — Stopped by technical problems
Second week: Uniqueness of Fourier series and convolutions
- 19/01 Class4: Chapter 2 FourierAnalysis_class4_19_01_2021
- 21/01 Class5: Chapter 2 FourierAnalysis_class5_21_01_2021
- 21/01 Notes_class5: FourierAnalysis_notesclass5_21_01_2021
- 21/01 Class6: FourierAnalysis_exercises6_21_01_2021 — Hint to exercise (b.13) and solution of exercise (15) from Problem set 1.
Third week: Convolution, good kernels and Cesáro summability
- 26/01 Class7: Chapter 2 FourierAnalysis_class7_26_01_2021
- 28/01 Class8: Chapter 2 FourierAnalysis_class8_28_01_2021
- 28/01 Class9: FourierAnalysis_exercises9_28_01_2021 — Solutions of exercises (7.c) and (9.b) from Problem set 1.
Fourth week: Vector spaces of functions on the circle and mean-square convergence
- 02/02 Class10: Chapter 3 Section 1.1FourierAnalysis_class10_02_02_2021
- 04/02 Class11: Chapter 3 Section 1.1-1.2 FourierAnalysis_class11_04_02_2021
- 04/02 Class12 FourierAnalysis_exercises12_04_02_2021 — Solution of exercise (17.a) and (21.b) from Problem set 2.
Fifth week: Convergence of Fourier series
- 09/02 Class13: Chapter 3 Section 1.2-2.1 FourierAnalysis_class13_09_02_2021
- 11/02 Class14: Chapter 3 Section 2.1 FourierAnalysis_class14_11_02_2021
- 11/02 Class15: Changed
Sixth week: Applications of Fourier series
- 16/02 Class16: Chapter 4 Section 2 FourierAnalysis_class16_16_02_2021
- 18/02 Class17: Chapter 4 Section 2 FourierAnalysis_class17_18_02_2021
- 18/02 Class18: FourierAnalysis_exercises18_18_02_2021 — Solution of exercises (21.c) and (25) from Problem set 2
Seventh week: Fourier transform I
- 23/02 Class19: Chapter 5 Section 1.1 FourierAnalysis_class19_23_02_2021
- 25/02 Class20: Chapter 5 Section 1.2 FourierAnalysis_class20_25_02_2021
- 25/02 Class21: —
Eighth week: Fourier transform II
- 02/03 Class22: Chapter 5 Section 1.2-1.4 FourierAnalysis_class22_02_03_2021
- 04/03 Class23: Chapter 5 Section 1.4 FourierAnalysis_class23_04_03_2021
- 04/03 Class24: —
Ninth week: Fourier transform III
- 09/03 Class25: Chapter 5 Section 1.5 FourierAnalysis_class25_09_03_2021
- 11/03 Class26: Chapter 5 Section 1.5 FourierAnalysis_class26_11_03_2021
- 11/03 Class27: —
Tenth week: Poisson summation formula
- 16/03 Class28: Chapter 5 Section 1.6 FourierAnalysis_class28_16_03_2021
- 18/03 Class29: Chapter 5 Section 3 FourierAnalysis_class29_18_03_2021
- 18/03 Class30: Canceled
Eleventh week: The Gamma-function and the Riemann zeta-function
- 23/03 Class31: Chapter 5 Section 3.1 - Chapter 6 Section 1 (CA) 6 FourierAnalysis_class31_23_03_2021
- 25/03 Class32: Chapter 5 Section 3.1 - Chapter 6 Section 2 (CA) 6 FourierAnalysis_class32_25_03_2021
- 25/03 Class33: —
Twelfth week: Easter
Thirteenth week: The Riemann zeta-function
- 06/04 Class34: Free
- 08/04 Class35 Chapter 5 Section 3.1 - Chapter 6 Section 2 (CA) FourierAnalysis_class35_08_04_2021
- 08/04 Class36: FourierAnalysis_class36_08_04_2021
Fourteenth week: Paley-Wiener theorem and Uncertainty principle
- 13/04 Class37 Chapter 5 Section 4 FourierAnalysis_class37_13_04_2021
- 15/04 Class38: FourierAnalysis_class38_15_04_2021
- 15/04 Class39: —
Fifteenth week: Shannon interpolation formula and Vaaler interpolation formula
- 20/04 Class40: FourierAnalysis_class40_20_04_2021
- 22/04 Class41: FourierAnalysis_class41_22_04_2021
- 22/04 Class42: FourierAnalysis_class42_22_04_2021 — Solution exercise 69
Sixteenth week: Review
- 27/04 Class43: Solution of exercises FourierAnalysis_class43_22_04_2021