Lecture plan/topics

This plan will be updated throughout the semester. J.S. refers to the book by Jordan and Smith. H. refers to the note by Hanche-Olsen.

Day Topic Sections Remarks
11.1IntorductionJ.S: 1.1-1.3Repetition
12.1IntroductionJ.S: 1.1-1.3Repetition
Well-posedness, uniquenessH: Ch. 1   
18.1Well-posedness, uniquenessH: Ch. 1Repetition
19.1Well-posedness, uniquenessH: Ch. 1Repetition
  Linear 2x2 systemsJ.S: 2.4-2.6
25.1Linear 2x2 systemsJ.S: 2.4-2.6 Repetition
Nonlinear 2x2 systemsJ.S: 2.1, 2.8
26.1Nonlinear 2x2 systemsJ.S: 2.1, 2.8Repetition
1.2 Nonlinear 2x2 systemsJ.S: 2.3, 2.7Repetition
H: Ch. 2
2.2Nonlinear 2x2 systemsJ.S: 2.3, 2.7Repetition
  H: Ch.2
8.2Nonlinear 2x2 systemsJ.S: 2.2Repetition
Stability J.S: 8.1-8.4
9.2Stability J.S: 8.1-8.4Repetition
  Linear systems J.S: 8.5-8.6
15.2 Linear systemsJ.S: 8.5-8.6Repetition
Stability J.S: 8.7-8.8
16.2 StabilityJ.S: 8.7-8.8Repetition
Matrix exponential J.S: 8.8, 10.9  
22.2 Matrix ExponentialJ.S: 8.8 10.9Repetition
 Stability J.S: 8.9-8.11
23.2 StabilityJ.S: 8.9-8.11Repetition
 Liapunov methodsJ.S: 10.1, 10.3
1.3Liapunov methodsJ.S: 10.3, 10.6-10.7 Repetition
2.3Liapunov methodsJ.S: 10.8, 10.10 Repetition
8.3Liapunov methodsJ.S: 10.10Repetition
Homoclinic / Heteroclinic phase paths J.S: 3.6 
9.3 Index theoryJ.S: 3.1Repetition
15.3Index theoryJ.S: 3.1Repetition
Limit cycles and closed pathsJ.S: 3.4
16.3Index theoryJ.S: 3.2Repetition
   BifurcationsJ.S: 12.1-12.4
22.3ProjectTraveling wave solutions for the Korteweg-de Vries equation no lecture
23.3ProjectTraveling wave solutions for the Korteweg-de Vries equationno lecture 
5.4BifurcationsJ.S: 12.1-12.4Repetition
6.4Poincare BendixsonH: Ch. 6Repetition
12.4Poincare mapsJ.S: 13.1Repetition
Periodic solutionsJ.S: 11.1
13.4Periodic solutionsJ.S: 11.2-11.3Repetition
19.4Periodic solutionsJ.S: 11.3 (There is a mistake in Thm 11.4)Repetition
2018-04-19, Katrin Grunert