# Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Begge sider forrige revisjon Forrige revisjon Neste revisjon | Forrige revisjon | ||

tma4145:2019h:log [2019-07-12] franzl |
tma4145:2019h:log [2019-10-08] (nåværende versjon) franzl |
||
---|---|---|---|

Linje 8: | Linje 8: | ||

* Tuesday: Left and right inverses, inverses for functions and their characterization in terms of injectivity, surjectivity and bijectivity. Cardinality and countable sets. See Chapter 1.2-1.3 in LN. | * Tuesday: Left and right inverses, inverses for functions and their characterization in terms of injectivity, surjectivity and bijectivity. Cardinality and countable sets. See Chapter 1.2-1.3 in LN. | ||

+ | ''Second week (week 35)'' | ||

+ | |||

+ | * Monday: Supremum and infimum of sets and functions. See Chapter 1.3-1.4 in LN. | ||

+ | |||

+ | * Tuesday: Real (and complex) vector spaces, basic examples of vector spaces, subspaces and linear transformations between vector spaces. See Chapter 2.1 in LN. | ||

+ | |||

+ | ''Third week (week 36)'' | ||

+ | |||

+ | * Monday: Normed spaces,metric spaces, p-norms, Young's inequality, Hoelder's inequality. See Chapter 2.2 in LN. | ||

+ | |||

+ | * Tuesday: Triangle inequality for ||.||_p norms of real n-tuples, complex n-tuples sequences and functions. | ||

+ | |||

+ | ''Fourth week (week 37)'' | ||

+ | * Monday: Inner product spaces, properties of the inner product, Cauchy-Schwarz inequality. See Chapter 2.2-2.3 in LN. | ||

+ | |||

+ | * Tuesday: Examples of inner product spaces, Jordan-von Neumann's characterization of norms induced by inner products, polarization identities, orthogonality, Pythagoras' theorem, convergence of sequences in normed spaces. See Chapters 2.3 and 3.1 in LN. | ||

+ | |||

+ | ''Fifth week (week 38)'' | ||

+ | |||

+ | * Monday: Convergent sequences in metric and normed spaces, bounded subsets and limit points, Cauchy sequences. See Chapter 3.1 in LN. | ||

+ | |||

+ | * Tuesday: Cauchy sequences and completeness, completeness of (R,|.|), examples of Banach spaces and completeness of the space of d-tuples with the sup-norm. See Ch. 3.1-3.2 in LN. | ||

+ | |||

+ | ''Sixth week (week 39)'' | ||

+ | |||

+ | * Monday: Further examples of Banach spaces, complete subspaces, uniform convergence of sequences of continuous functions. Isometries and isomorphic vector spaces. | ||

+ | |||

+ | *Tuesday: Isometrically isomorphic normed spaces, embeddings, dense subsets, separability, Stone-Weierstrass theorem. See Ch 3.3 in LN. | ||

+ | |||

+ | ''Seventh week (week 40)'' | ||

+ | |||

+ | * Monday: Banach's fixed point theorem and finding fixed points by iteration. Newton's method as a fixed point iteration. LN: Chapter 3.4-3.5, 4.1. | ||

+ | |||

+ | * Tuesday: Applications of Banach fixed point theorem to integral equations and differential equations. LN: Chapter 3.5. Linear operators, continuous operators, | ||

+ | |||

+ | ''Eighth week (week 41)'' | ||

+ | |||

+ | * Monday: Bounded operators. Equivalence of boundedness and continuity for linear operators, Extension theorem, the vector space of bounded linear operators between normed spaces, See Ch 4.2 in LN. | ||

+ | |||

+ | * Tuesday: Vector space of bounded linear operators, operator norm, completeness if co-domains are Banach spaces, proof that the kernel of a bounded linear operator is closed, the range need not be. See Ch. 4.2 in LN. | ||

+ | |||

+ | ''Ninth week (week 42)'' | ||

+ | |||

+ | * Monday: Dual space, best approximation theorem. See Ch. 4.3-5.1 in LN. | ||

+ | |||

+ | * Tuesday: Best approximation theorem, orthogonal complements, the projection theorem, consequences of the projection theorem. See Ch. 5.1 in LN. | ||

+ | |||

+ | ''Tenth week (week 43)'' | ||

+ | |||

+ | * Monday: Examples of Hilbert spaces, Riesz' representation theorem, proof and examples. See Ch 5.2 in LN. | ||

+ | |||

+ | * Tuesday: Adjoint operators, properties of adjoint operators and examples. Normal, unitary and self-adjoint operators. See Ch 5.3 in LN. | ||

+ | |||

+ | ''Eleventh week (week 44)'' | ||

+ | |||

+ | * Monday: Linear independence, Hamel bases, dimension, Schauder bases, (infinite) series in vector spaces, orthogonal sets and the closest point property, See Ch 6.1-6.3 in LN. | ||

+ | |||

+ | * Tuesday: The closest point property, Gram-Schmidt orthogonalization, convergence of series in Hilbert spaces, orthonormal bases, maximal orthonormal sequences, the Fourier series theorem. See Ch. 6.3-6.4 in LN. | ||

+ | |||

+ | ''Twelfth week (week 45)'' | ||

+ | |||

+ | * Monday: Equivalent norms. Linear transformations on finite-dimensional vector spaces and their matrix representation. Null-space, column space and row space of a matrix. See Ch. 6.5 and 7.1 in LN. | ||

+ | |||

+ | * Tuesday: The rank-nullity theorem and its consequences. Eigenvalues and eigenvectors. Similarity transforms and Schur's lemma. The spectral theorem for Hermitian matrices. See Ch. 7.1-7.3 in LN. | ||

+ | |||

+ | ''Thirteenth week (week 46)'' | ||

+ | |||

+ | * Monday: The spectral theorem. Positive and semi-positive definiteness. Singular value decomposition. See Ch. 7.4-7.5 in LN. | ||

+ | |||

+ | * Tuesday: SVD example, brief discussion on applications of SVDs, pseudoinverse of a linear transformation, calculating the pseudoinverse of a matrix. See Ch. 7.5-7.6 in LN. |