TMA4115 Gamle eksamensoppgaver

1) Fasiten til oppgave 3a) er riktig, men det finnes noen regnefeil underveis.
2) Fasiten til oppgave 2) er feil, på grunn av en regnefeil når det anvendes den inverse Laplacetransformen. Riktig fasit, se filen ved siden av.
3) 4a) Det skulle være \( e^{\frac{2}{z-1}}=\sum_{n=0}^\infty \frac{2^n}{n!}\frac{1}{(z-1)^n}\) and \(e^{\frac{1}{(z+1)^2}}=\sum_{n=0}^\infty \frac{1}{n!}\frac{1}{(z+1)^{2n}}\).
4) 2b) Det skulle være \(F(-\frac{\pi}{4})=-\cos(\frac{\pi}{4})=-\frac{1}{\sqrt{2}}\).
5) 4b) Skal være \(b_n=\frac{2}{\pi n}-\frac{1}{\pi (n-2)}-\frac{1}{\pi (n+2)},\) for \(n\) odd.
6) 1b) Funksjonen \(Y(s)\) skal være \(Y(s)=\frac{1-e^{-\pi s}}{4s^2}-\frac{1}{4}\frac{1-e^{-\pi s}}{s^2+4}+\frac{s}{s^2+4}\). Dermed blir rett svar \(y(t)=t/4-(t-\pi)u(t-\pi)/4-\frac{\sin(2t)}{8}+\frac{u(t-\pi)\sin(2t)}{8}+\cos(2t)\).
7) 3) Svaret skal være \(\sqrt{2\pi}xe^{-x}\) for alle \(x\).
8) 5a) Svaret skal være \(f(z)=\frac{1}{2}\sum_{n=0}^{\infty}(n+1)(n+2)z^n\). 5b) Svaret skal være \(f(z)=-\frac{1}{2}\sum_{n=1}^{\infty}n(n+1)z^{-(n+2)}\).
9) 5b) Svaret skal være \(\frac{3z}{1-3z^2}\) ikke \(\frac{3z}{1-3z}\).

Oppgavesamlinger

2018-11-06, Håvard Bakke Bjerkevik