Modern tools and methods, numerical models, and ocean science
Jarle Berntsen

In geostatistics, the design for data collection is central for accurate prediction and parameter inference. One important class of geostatistical models is log-Gaussian Cox process (LGCP) which is used extensively, for example, in ecology. However, there are no formal analyses on optimal designs for LGCP models. In this work, we develop a novel model-based experimental design for LGCP modeling of spatiotemporal point process data. We propose a new spatially balanced rejection sampling design which directs sampling to spatiotemporal locations that are a priori expected to provide most information. We compare the rejection sampling design to traditional balanced and uniform random designs using the average predictive variance loss function and the Kullback-Leibler divergence between prior and posterior for the LGCP intensity function. Our results show that the rejection sampling method outperforms the corresponding balanced and uniform random sampling designs for LGCP whereas the latter work better for models with Gaussian models. We perform a case study applying our new sampling design to plan a survey for species distribution modeling on larval areas of two commercially important fish stocks on Finnish coastal areas. The case study results show that rejection sampling designs give considerable benefit compared to traditional designs. Results show also that best performing designs may vary considerably between target species.

2018-09-24, Jacopo Paglia