Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
Neste revisjon
Forrige revisjon
Siste revisjon Begge sider neste revisjon
ma8105:2019v:lectures [2019-02-13]
erj
ma8105:2019v:lectures [2019-04-05]
erj
Linje 10: Linje 10:
 ^ 5  | **Distribution theory**  \\ Definitions, properties,  \\ operations, regular/singular  \\ \\ operations(cont.), derivatives of regular distr.,  \\ the fundamental theorem, convolution  \\ \\  | 3  | \\ \\ | **Remark:** We define convolution both as a function as in Holden and as a distribution (see e.g. Wikipedia). The two definitions are related, one is the "density function" of the other.  | ^ 5  | **Distribution theory**  \\ Definitions, properties,  \\ operations, regular/singular  \\ \\ operations(cont.), derivatives of regular distr.,  \\ the fundamental theorem, convolution  \\ \\  | 3  | \\ \\ | **Remark:** We define convolution both as a function as in Holden and as a distribution (see e.g. Wikipedia). The two definitions are related, one is the "density function" of the other.  |
 ^ 6  | Convolutions (cont.), convergence,  \\ approximations  \\ \\ Primitive in 1D, equations in \(D'\),  \\ fundamental solutions  | |  | | ^ 6  | Convolutions (cont.), convergence,  \\ approximations  \\ \\ Primitive in 1D, equations in \(D'\),  \\ fundamental solutions  | |  | |
-^ 7  | **Lebesgue Spaces**  \\ Strong and weak \(L^p\), properties, inequalities. \\ \\ Convolutions, approximation in \(L^p\).  \\ \\ Approximation in \(L^p\), compactness in \(L^p\)   | 4  | 4.1, Prop 4.4 and Thm 4.6,  \\ 4.2, 4.7, 4.3  \\ \\ | **Proof of Kolmogorov:** We take the classical proof and not the one in the Holden notes, see e.g. Theorem A.5 in Holden-Risebro: Front Tracking for Hyperbolic Conservation Laws.  \\ \\ The classical proof is an approximation argument that reduces the proof to an application of Arzela-Ascoli.  \\ \\  | +^ 7  | **Lebesgue Spaces**  \\ Strong and weak \(L^p\), properties, inequalities. \\ \\ Convolutions, approximation in \(L^p\).  \\ \\ Approximation in \(L^p\), compactness in \(L^p\)   | 4  | 4.1, Prop 4.4 and Thm 4.6,  \\ 4.2, 4.7, 4.3  \\ \\ p 86-89  | **Proof of Kolmogorov:** We take the classical proof and not the one in the Holden notes, see e.g. Theorem A.5 in Holden-Risebro: Front Tracking for Hyperbolic Conservation Laws.  \\ \\ The classical proof is an approximation argument that reduces the proof to an application of Arzela-Ascoli.  \\ \\ OBS: 3 lectures this week, only one next week.  \\ \\ 
-^ 8  | Modes of convergence     | | p 86-89  \\ \\ p 59-63  |  | +^ 8  | Modes of convergence     | | p 59-63  | Only one lecture this week, three last week.  \\ \\  | 
-^ 9  | Modes of convergence (cont.),  \\ convergence and compactness in \(L^p,\ p\in(1,\infty)\).  \\ \\ Limiting cases: Convergence and compactness in\(L^1\),  \\ Dunford-Pettis with proof, uniform integrability, de la Vallee-Poussin.   | | p 60-65  \\ \\ p 65-70  \\ \\  | **My lecture notes** on Dunford-Pettis and equiintegrability [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote02.03.2017_DunfordPettis_and_Equiintegrability.pdf|PDF]]  \\ \\ Note that the proof in the notes of Holden lack the conclusion.  \\ \\  | +^ 9  | Convergence and compactness in \(L^p,\ p\in(1,\infty)\).  \\ \\ Convergence and compactness in\(L^1\),  \\ Dunford-Pettis with proof, uniform integrability, de la Vallee-Poussin.  \\ \\ Convergence and compactness in \(L^\infty\)  \\ Examples.  | | p 60-65  \\ \\ p 65-75  \\ \\  | **My lecture notes** on Dunford-Pettis and equiintegrability [[http://www.math.ntnu.no/emner/MA8105/2019v/public/DunfordPettisAndEquiintegrabilityNote2019.pdf|PDF]]  \\ \\ Note that the proof of Dunford-Pettis in the notes of Holden lack the conclusion.  \\ \\ The discussion on equiintegrability can not be found in Holden, see my notes.  | 
-^ 10  | Convergence and compactness in\(L^1\) (cont.), \\ Convergence and compactness in \(L^\infty\)  \\ Examples.  \\ \\ Radon measures, the space \(\mathcal M\),\\ Weak * compactness in \(\mathcal M\) and the subspace \(L^1\)    | | p 69-75  \\ \\ p 75-78  | This material is partly taken from Folland: //Real Analysis// chp 7, partly from Holden.  \\ \\ **Note:** Riesz representation theorem, the space \(M\) needs be defined as the space of //finite// Radon measures.  \\ \\ **My lecture notes** on Radon measure and compactness: [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote09.03.2017_RadonMeasuresAndCompactness.pdf|PDF]].  \\ \\ | +^ 10  | Radon measures, the space \(\mathcal M\),\\ Weak * compactness in \(\mathcal M\) and the subspace \(L^1\)  \\ \\ **Sobolev Spaces** \\ Definitions, smooth approximations  \\ \\ \\ \\ \\ \\ \\ 5  | p 75-79  \\ \\ \\ \\ \\ \\ \\ 95-97  \\ \\ | This material is partly taken from Folland: //Real Analysis// chp 7, partly from Holden.  \\ \\ **Note:** Riesz representation theorem, the space \(M\) needs be defined as the space of //finite// Radon measures.  \\ \\ **My lecture notes** on Radon measure and compactness: [[http://www.math.ntnu.no/emner/MA8105/2019v/public/LecNote04.03.2019_RadonMeasuresAndCompactness.pdf|PDF]].  \\ \\ | 
-^ 11  | **Sobolev Spaces** \\ Definitions, smooth approximations  \\ \\ Smooth approximations (cont.) \\ straightening the boundary, extensions  | 5  | 95-97  \\ \\ 97-97, 179 (App B.3)  | **OBS:** //Global approx up to boundary// - the proof in Holden using straightening is not optimal and only gives \(C^1\) approximate functions. In the lectures I used the proof from //Evans: PDEs// chapter 5 that avoids straightening and give \(C^\infty\) approximations.  \\ \\ **My lecture notes** on smooth approximation up the boundary and straightening the boundary: [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote16.03.2017_SobolevSmApproStraightening.pdf|PDF]].  \\ \\  | +^ 11  | Smooth approximations (cont.) \\ straightening the boundary, extensions  \\ \\ Extensions, restrictions/trace  |  | 97-97, 179 (App B.3)  \\ \\ \\ \\ \\ \\ 97-99  | **OBS:** //Global approx up to boundary// - the proof in Holden using straightening is not optimal and only gives \(C^1\) approximate functions. In the lectures I used the proof from //Evans: PDEs// chapter 5 that avoids straightening and give \(C^\infty\) approximations.  \\ \\ **My lecture notes** on smooth approximation up the boundary and straightening the boundary: [[http://www.math.ntnu.no/emner/MA8105/2019v/public/LecNote11.03.2019_SobolevSmApproStraightening.pdf|PDF]].  \\ \\  | 
-^ 12  | Extensions, restrictions  \\ \\ Restrictions (cont),  \\ Sobolev inequalities, Gagliardo-Nirenberg-Sobolev  | | 98-102 \\ \\ 102-104  |  +^ 12  | Restrictions/trace (cont),  \\ Sobolev inequalities, Gagliardo-Nirenberg-Sobolev  \\ \\ Sobolev inequalities: Gagliardo, Poincare.  \\ \\ H\"older spaces, Morrey's inequality.  \\ \\  | | 98-102 \\ \\ 102-104  \\ \\ \\ 105-107, 111-112  \\ \\ 110-111, 118.  | **Obs:** 3 lectures this week.  
-^ 13  | Sobolev inequalities: Gagliardo, Poincare.  \\ \\ H\"older spaces, Morrey's inequality.  \\ \\    | | 104-107, 111-112 \\ \\ 110-111, 118.  | |  +13  | General Sobolev inequalities,  \\ embedding, compactness in \(W^{1,p}\)  \\ \\  | | 116-118, 18-19, 112-114  \\ \\ | **Obs:** 1 only one lecture this week.  \\ \\ **Rellich-Kondrachov:** In the lectures I give a stronger version of this result than presented in the notes of Holden. I follow the book of Evans, and show compact embedding into Hoelder spaces \(C^{0\,\gamma}\).  \\ \\ **The proof** of the first part of Rellich-Kondarchov's compactness theorem follows from extension, Kolmogorov-Riesz compactness theorem, and interpolation in \(L^p\). This way avoids the long regularization + Arzela-Ascoli argument used in the Holden notes (and in PDE book by Evans). In fact the the regularization + Arzela-Ascoli argument is exactly the argument we used in class to proof Kolmogorov-Riesz in the first place (but the proof in the notes of Holden is slightly different).  \\ \\ **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote25.03.2019_GenSobolevIneq_and_RellichKondrachovCompThm.pdf|General Sobolev inequalities and Strong comactness in \(W^{1,p}\)]]  \\ \\ | 
-14  | General Sobolev inequalities,  \\ embedding, compactness in \(W^{1,p}\)  \\ \\ Compactness (cont.),  \\ Sobolev chain rule, finite differences.  \\ \\ | | 116-118, 18-19, 112-114  \\ \\ 114-116, 126, 128  \\ \\ **Rellich-Kondrachov:** In the lectures I give a stronger version of this result than presented in the notes of Holden. I follow the book of Evans, and show compact embedding into Hoelder spaces \(C^{0\,\gamma}\).  \\ \\ **The proof** of the first part of Rellich-Kondarchov's compactness theorem follows from extension, Kolmogorov-Riesz compactness theorem, and interpolation in \(L^p\). This way avoids the long regularization + Arzela-Ascoli argument used in the Holden notes (and in PDE book by Evans). In fact the the regularization + Arzela-Ascoli argument is exactly the argument we used in class to proof Kolmogorov-Riesz in the first place (but the proof in the notes of Holden is slightly different).  \\ \\ **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote03.04.2017_GenSobolevIneq_and_RellichKondrachovCompThm.pdf|General Sobolev inequalities and Strong comactness in \(W^{1,p}\)]]  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote06.04.2017_Rellich_ChainRule_and_DifferenceQuotients.pdf|Strong comactness, chain rule, and difference quotients]]  \\ \\  | +^ 14  | Compactness (cont.),  \\ Sobolev chain rule, finite differences.  \\ \\ **Application:** Application: Convergence of finite difference approximation for the Porous Medium Equation (PME).  \\ \\ A. About PME (eq'n, background, self-similar solutions, derivation, well-posedness and a priori estimates).  \\ \\ B. The explicit monotone finite difference approximation.  \\ \\ C. A priori estimates for the approximation.  \\ \\ | |  114-116, 126, 128   | **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote06.04.2017_Rellich_ChainRule_and_DifferenceQuotients.pdf|Strong comactness, chain rule, and difference quotients]]  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote05.04.2019_Application_PorousMediumEquation_I.pdf|Porous Medium Equations I: Intro, finite difference approximation, a priori estimates]]  \\ \\  | 
-^ 15  | Application: To be decided | | | | +^ 15  | D. Interpolation in time and compactness.  \\ \\ E. Convergence of the method.  \\ \\ Plan the oral exam.  \\ Dates and organization.  \\ \\  | | | **Only one lecture this week - Monday**  \\ \\ **Reference group meeting**  \\ \\ **Decide on exam date**  \\ \\ 
2019-04-08, Espen Robstad Jakobsen