Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
Neste revisjon Begge sider neste revisjon
ma8105:2019v:lectures [2019-02-13]
erj
ma8105:2019v:lectures [2019-02-15]
erj
Linje 10: Linje 10:
 ^ 5  | **Distribution theory**  \\ Definitions, properties,  \\ operations, regular/singular  \\ \\ operations(cont.), derivatives of regular distr.,  \\ the fundamental theorem, convolution  \\ \\  | 3  | \\ \\ | **Remark:** We define convolution both as a function as in Holden and as a distribution (see e.g. Wikipedia). The two definitions are related, one is the "density function" of the other.  | ^ 5  | **Distribution theory**  \\ Definitions, properties,  \\ operations, regular/singular  \\ \\ operations(cont.), derivatives of regular distr.,  \\ the fundamental theorem, convolution  \\ \\  | 3  | \\ \\ | **Remark:** We define convolution both as a function as in Holden and as a distribution (see e.g. Wikipedia). The two definitions are related, one is the "density function" of the other.  |
 ^ 6  | Convolutions (cont.), convergence,  \\ approximations  \\ \\ Primitive in 1D, equations in \(D'\),  \\ fundamental solutions  | |  | | ^ 6  | Convolutions (cont.), convergence,  \\ approximations  \\ \\ Primitive in 1D, equations in \(D'\),  \\ fundamental solutions  | |  | |
-^ 7  | **Lebesgue Spaces**  \\ Strong and weak \(L^p\), properties, inequalities. \\ \\ Convolutions, approximation in \(L^p\).  \\ \\ Approximation in \(L^p\), compactness in \(L^p\)   | 4  | 4.1, Prop 4.4 and Thm 4.6,  \\ 4.2, 4.7, 4.3  \\ \\ | **Proof of Kolmogorov:** We take the classical proof and not the one in the Holden notes, see e.g. Theorem A.5 in Holden-Risebro: Front Tracking for Hyperbolic Conservation Laws.  \\ \\ The classical proof is an approximation argument that reduces the proof to an application of Arzela-Ascoli.  \\ \\  | +^ 7  | **Lebesgue Spaces**  \\ Strong and weak \(L^p\), properties, inequalities. \\ \\ Convolutions, approximation in \(L^p\).  \\ \\ Approximation in \(L^p\), compactness in \(L^p\)   | 4  | 4.1, Prop 4.4 and Thm 4.6,  \\ 4.2, 4.7, 4.3  \\ \\ | **Proof of Kolmogorov:** We take the classical proof and not the one in the Holden notes, see e.g. Theorem A.5 in Holden-Risebro: Front Tracking for Hyperbolic Conservation Laws.  \\ \\ The classical proof is an approximation argument that reduces the proof to an application of Arzela-Ascoli.  \\ \\ OBS: 3 lectures this week, only one next week.  \\ \\ 
-^ 8  | Modes of convergence     | | p 86-89  \\ \\ p 59-63  |  |+^ 8  | Modes of convergence     | | p 86-89  \\ \\ p 59-63  | Only one lecture this week, three last week.  \\ \\  |
 ^ 9  | Modes of convergence (cont.),  \\ convergence and compactness in \(L^p,\ p\in(1,\infty)\).  \\ \\ Limiting cases: Convergence and compactness in\(L^1\),  \\ Dunford-Pettis with proof, uniform integrability, de la Vallee-Poussin.   | | p 60-65  \\ \\ p 65-70  \\ \\  | **My lecture notes** on Dunford-Pettis and equiintegrability [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote02.03.2017_DunfordPettis_and_Equiintegrability.pdf|PDF]]  \\ \\ Note that the proof in the notes of Holden lack the conclusion.  \\ \\  | ^ 9  | Modes of convergence (cont.),  \\ convergence and compactness in \(L^p,\ p\in(1,\infty)\).  \\ \\ Limiting cases: Convergence and compactness in\(L^1\),  \\ Dunford-Pettis with proof, uniform integrability, de la Vallee-Poussin.   | | p 60-65  \\ \\ p 65-70  \\ \\  | **My lecture notes** on Dunford-Pettis and equiintegrability [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote02.03.2017_DunfordPettis_and_Equiintegrability.pdf|PDF]]  \\ \\ Note that the proof in the notes of Holden lack the conclusion.  \\ \\  |
 ^ 10  | Convergence and compactness in\(L^1\) (cont.), \\ Convergence and compactness in \(L^\infty\)  \\ Examples.  \\ \\ Radon measures, the space \(\mathcal M\),\\ Weak * compactness in \(\mathcal M\) and the subspace \(L^1\)    | | p 69-75  \\ \\ p 75-78  | This material is partly taken from Folland: //Real Analysis// chp 7, partly from Holden.  \\ \\ **Note:** Riesz representation theorem, the space \(M\) needs be defined as the space of //finite// Radon measures.  \\ \\ **My lecture notes** on Radon measure and compactness: [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote09.03.2017_RadonMeasuresAndCompactness.pdf|PDF]].  \\ \\ | ^ 10  | Convergence and compactness in\(L^1\) (cont.), \\ Convergence and compactness in \(L^\infty\)  \\ Examples.  \\ \\ Radon measures, the space \(\mathcal M\),\\ Weak * compactness in \(\mathcal M\) and the subspace \(L^1\)    | | p 69-75  \\ \\ p 75-78  | This material is partly taken from Folland: //Real Analysis// chp 7, partly from Holden.  \\ \\ **Note:** Riesz representation theorem, the space \(M\) needs be defined as the space of //finite// Radon measures.  \\ \\ **My lecture notes** on Radon measure and compactness: [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote09.03.2017_RadonMeasuresAndCompactness.pdf|PDF]].  \\ \\ |
2019-04-08, Espen Robstad Jakobsen