Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
Neste revisjon
Forrige revisjon
ma8105:2019v:lectures [2019-02-04]
erj
ma8105:2019v:lectures [2019-04-08]
erj
Linje 10: Linje 10:
 ^ 5  | **Distribution theory**  \\ Definitions, properties,  \\ operations, regular/singular  \\ \\ operations(cont.), derivatives of regular distr.,  \\ the fundamental theorem, convolution  \\ \\  | 3  | \\ \\ | **Remark:** We define convolution both as a function as in Holden and as a distribution (see e.g. Wikipedia). The two definitions are related, one is the "density function" of the other.  | ^ 5  | **Distribution theory**  \\ Definitions, properties,  \\ operations, regular/singular  \\ \\ operations(cont.), derivatives of regular distr.,  \\ the fundamental theorem, convolution  \\ \\  | 3  | \\ \\ | **Remark:** We define convolution both as a function as in Holden and as a distribution (see e.g. Wikipedia). The two definitions are related, one is the "density function" of the other.  |
 ^ 6  | Convolutions (cont.), convergence,  \\ approximations  \\ \\ Primitive in 1D, equations in \(D'\),  \\ fundamental solutions  | |  | | ^ 6  | Convolutions (cont.), convergence,  \\ approximations  \\ \\ Primitive in 1D, equations in \(D'\),  \\ fundamental solutions  | |  | |
-^ 7  | \\ **Lebesgue Spaces**  \\ Strong and weak \(L^p\), properties, inequalities. \\ \\ Convolutions, compactness,  \\ Arzela-Ascoli and Kolmogorov-Riesz  | \\ 4  |   \\ \\ |   | +^ 7  | **Lebesgue Spaces**  \\ Strong and weak \(L^p\), properties, inequalities. \\ \\ Convolutions, approximation in \(L^p\).  \\ \\ Approximation in \(L^p\), compactness in \(L^p\  | 4  | 4.1, Prop 4.4 and Thm 4.6,  \\ 4.2, 4.74.3  \\ \\ p 86-89  | **Proof of Kolmogorov:** We take the classical proof and not the one in the Holden notes, see e.g. Theorem A.5 in Holden-Risebro: Front Tracking for Hyperbolic Conservation Laws.  \\ \\ The classical proof is an approximation argument that reduces the proof to an application of Arzela-Ascoli.  \\ \\ OBS: 3 lectures this week, only one next week.  \\ \\ 
-^ 8  | Approximation in \(L^p\), Kolmogorov (cont.).  \\ \\ Kolmogorov (cont.)modes of convergence     | | p 86-89  \\ \\ p 59-63  | **Proof of Kolmogorov:** We take the classical proof and not the one in the Holden notes, see e.g. Theorem A.5 in Holden-Risebro: Front Tracking for Hyperbolic Conservation Laws.  \\  | + | Modes of convergence     | | p 59-63  | Only one lecture this weekthree last week.  \\ \\  | 
- | Modes of convergence (cont.),  \\ convergence and compactness in \(L^p,\ p\in(1,\infty)\).  \\ \\ Limiting cases: Convergence and compactness in\(L^1\),  \\ Dunford-Pettis with proof, uniform integrability, de la Vallee-Poussin.   | | p 60-65  \\ \\ p 65-70  \\ \\  | **My lecture notes** on Dunford-Pettis and equiintegrability [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote02.03.2017_DunfordPettis_and_Equiintegrability.pdf|PDF]]  \\ \\ Note that the proof in the notes of Holden lack the conclusion.  \\ \\  | +^ 9  | Convergence and compactness in \(L^p,\ p\in(1,\infty)\).  \\ \\ Convergence and compactness in\(L^1\),  \\ Dunford-Pettis with proof, uniform integrability, de la Vallee-Poussin.  \\ \\ Convergence and compactness in \(L^\infty\)  \\ Examples.  | | p 60-65  \\ \\ p 65-75  \\ \\  | **My lecture notes** on Dunford-Pettis and equiintegrability [[http://www.math.ntnu.no/emner/MA8105/2019v/public/DunfordPettisAndEquiintegrabilityNote2019.pdf|PDF]]  \\ \\ Note that the proof of Dunford-Pettis in the notes of Holden lack the conclusion.  \\ \\ The discussion on equiintegrability can not be found in Holden, see my notes.  | 
-^ 10  | Convergence and compactness in\(L^1\) (cont.), \\ Convergence and compactness in \(L^\infty\)  \\ Examples.  \\ \\ Radon measures, the space \(\mathcal M\),\\ Weak * compactness in \(\mathcal M\) and the subspace \(L^1\)    | | p 69-75  \\ \\ p 75-78  | This material is partly taken from Folland: //Real Analysis// chp 7, partly from Holden.  \\ \\ **Note:** Riesz representation theorem, the space \(M\) needs be defined as the space of //finite// Radon measures.  \\ \\ **My lecture notes** on Radon measure and compactness: [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote09.03.2017_RadonMeasuresAndCompactness.pdf|PDF]].  \\ \\ | +^ 10  | Radon measures, the space \(\mathcal M\),\\ Weak * compactness in \(\mathcal M\) and the subspace \(L^1\)  \\ \\ **Sobolev Spaces** \\ Definitions, smooth approximations  \\ \\ \\ \\ \\ \\ \\ 5  | p 75-79  \\ \\ \\ \\ \\ \\ \\ 95-97  \\ \\ | This material is partly taken from Folland: //Real Analysis// chp 7, partly from Holden.  \\ \\ **Note:** Riesz representation theorem, the space \(M\) needs be defined as the space of //finite// Radon measures.  \\ \\ **My lecture notes** on Radon measure and compactness: [[http://www.math.ntnu.no/emner/MA8105/2019v/public/LecNote04.03.2019_RadonMeasuresAndCompactness.pdf|PDF]].  \\ \\ | 
-^ 11  | **Sobolev Spaces** \\ Definitions, smooth approximations  \\ \\ Smooth approximations (cont.) \\ straightening the boundary, extensions  | 5  | 95-97  \\ \\ 97-97, 179 (App B.3)  | **OBS:** //Global approx up to boundary// - the proof in Holden using straightening is not optimal and only gives \(C^1\) approximate functions. In the lectures I used the proof from //Evans: PDEs// chapter 5 that avoids straightening and give \(C^\infty\) approximations.  \\ \\ **My lecture notes** on smooth approximation up the boundary and straightening the boundary: [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote16.03.2017_SobolevSmApproStraightening.pdf|PDF]].  \\ \\  | +^ 11  | Smooth approximations (cont.) \\ straightening the boundary, extensions  \\ \\ Extensions, restrictions/trace  |  | 97-97, 179 (App B.3)  \\ \\ \\ \\ \\ \\ 97-99  | **OBS:** //Global approx up to boundary// - the proof in Holden using straightening is not optimal and only gives \(C^1\) approximate functions. In the lectures I used the proof from //Evans: PDEs// chapter 5 that avoids straightening and give \(C^\infty\) approximations.  \\ \\ **My lecture notes** on smooth approximation up the boundary and straightening the boundary: [[http://www.math.ntnu.no/emner/MA8105/2019v/public/LecNote11.03.2019_SobolevSmApproStraightening.pdf|PDF]].  \\ \\  | 
-^ 12  | Extensions, restrictions  \\ \\ Restrictions (cont),  \\ Sobolev inequalities, Gagliardo-Nirenberg-Sobolev  | | 98-102 \\ \\ 102-104  |  +^ 12  | Restrictions/trace (cont),  \\ Sobolev inequalities, Gagliardo-Nirenberg-Sobolev  \\ \\ Sobolev inequalities: Gagliardo, Poincare.  \\ \\ H\"older spaces, Morrey's inequality.  \\ \\  | | 98-102 \\ \\ 102-104  \\ \\ \\ 105-107, 111-112  \\ \\ 110-111, 118.  | **Obs:** 3 lectures this week.  
-^ 13  | Sobolev inequalities: Gagliardo, Poincare.  \\ \\ H\"older spaces, Morrey's inequality.  \\ \\    | | 104-107, 111-112 \\ \\ 110-111, 118.  | |  +13  | General Sobolev inequalities,  \\ embedding, compactness in \(W^{1,p}\)  \\ \\  | | 116-118, 18-19, 112-114  \\ \\ | **Obs:** 1 only one lecture this week.  \\ \\ **Rellich-Kondrachov:** In the lectures I give a stronger version of this result than presented in the notes of Holden. I follow the book of Evans, and show compact embedding into Hoelder spaces \(C^{0\,\gamma}\).  \\ \\ **The proof** of the first part of Rellich-Kondarchov's compactness theorem follows from extension, Kolmogorov-Riesz compactness theorem, and interpolation in \(L^p\). This way avoids the long regularization + Arzela-Ascoli argument used in the Holden notes (and in PDE book by Evans). In fact the the regularization + Arzela-Ascoli argument is exactly the argument we used in class to proof Kolmogorov-Riesz in the first place (but the proof in the notes of Holden is slightly different).  \\ \\ **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote25.03.2019_GenSobolevIneq_and_RellichKondrachovCompThm.pdf|General Sobolev inequalities and Strong comactness in \(W^{1,p}\)]]  \\ \\ | 
-14  | General Sobolev inequalities,  \\ embedding, compactness in \(W^{1,p}\)  \\ \\ Compactness (cont.),  \\ Sobolev chain rule, finite differences.  \\ \\ | | 116-118, 18-19, 112-114  \\ \\ 114-116, 126, 128  \\ \\ **Rellich-Kondrachov:** In the lectures I give a stronger version of this result than presented in the notes of Holden. I follow the book of Evans, and show compact embedding into Hoelder spaces \(C^{0\,\gamma}\).  \\ \\ **The proof** of the first part of Rellich-Kondarchov's compactness theorem follows from extension, Kolmogorov-Riesz compactness theorem, and interpolation in \(L^p\). This way avoids the long regularization + Arzela-Ascoli argument used in the Holden notes (and in PDE book by Evans). In fact the the regularization + Arzela-Ascoli argument is exactly the argument we used in class to proof Kolmogorov-Riesz in the first place (but the proof in the notes of Holden is slightly different).  \\ \\ **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote03.04.2017_GenSobolevIneq_and_RellichKondrachovCompThm.pdf|General Sobolev inequalities and Strong comactness in \(W^{1,p}\)]]  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2017v/notes/LecNote06.04.2017_Rellich_ChainRule_and_DifferenceQuotients.pdf|Strong comactness, chain rule, and difference quotients]]  \\ \\  | +^ 14  | Compactness (cont.),  \\ Sobolev chain rule, finite differences.  \\ \\ **Application:** Application: Convergence of finite difference approximation for the Porous Medium Equation (PME).  \\ \\ A. About PME (eq'n, background, self-similar solutions, derivation, well-posedness and a priori estimates).  \\ \\ B. The explicit monotone finite difference approximation.  \\ \\ C. A priori estimates for the approximation.  \\ \\ | |  114-116, 126, 128   | **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote06.04.2017_Rellich_ChainRule_and_DifferenceQuotients.pdf|Strong comactness, chain rule, and difference quotients]]  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote05.04.2019_Application_PorousMediumEquation_I.pdf|Porous Medium Equations I: Intro, finite difference approximation, a priori estimates]]  \\ \\  | 
-^ 15  | Application: To be decided | | | | +^ 15  | D. Interpolation in time and compactness.  \\ \\ E. Convergence of the method.  \\ \\ Plan the oral exam.  \\ Dates and organization.  \\ \\  | | | **Only one lecture this week - Monday**  \\ \\ **Reference group meeting**  \\ \\ **Decide on exam date**  \\ \\  **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote08.04.2019_Application_PorousMediumEquation_II.pdf|Porous Medium Equations II: compactness, convergence]]  \\ \\ 
2019-04-08, Espen Robstad Jakobsen