Forskjeller

Her vises forskjeller mellom den valgte versjonen og den nåværende versjonen av dokumentet.

Lenk til denne sammenligningen

Begge sider forrige revisjon Forrige revisjon
ma8105:2019v:lectures [2019-04-05]
erj
ma8105:2019v:lectures [2019-04-08] (nåværende versjon)
erj
Linje 18: Linje 18:
 ^ 13  | General Sobolev inequalities,  \\ embedding, compactness in \(W^{1,p}\)  \\ \\  | | 116-118, 18-19, 112-114  \\ \\ | **Obs:** 1 only one lecture this week.  \\ \\ **Rellich-Kondrachov:** In the lectures I give a stronger version of this result than presented in the notes of Holden. I follow the book of Evans, and show compact embedding into Hoelder spaces \(C^{0\,\gamma}\).  \\ \\ **The proof** of the first part of Rellich-Kondarchov's compactness theorem follows from extension, Kolmogorov-Riesz compactness theorem, and interpolation in \(L^p\). This way avoids the long regularization + Arzela-Ascoli argument used in the Holden notes (and in PDE book by Evans). In fact the the regularization + Arzela-Ascoli argument is exactly the argument we used in class to proof Kolmogorov-Riesz in the first place (but the proof in the notes of Holden is slightly different).  \\ \\ **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote25.03.2019_GenSobolevIneq_and_RellichKondrachovCompThm.pdf|General Sobolev inequalities and Strong comactness in \(W^{1,p}\)]]  \\ \\ | ^ 13  | General Sobolev inequalities,  \\ embedding, compactness in \(W^{1,p}\)  \\ \\  | | 116-118, 18-19, 112-114  \\ \\ | **Obs:** 1 only one lecture this week.  \\ \\ **Rellich-Kondrachov:** In the lectures I give a stronger version of this result than presented in the notes of Holden. I follow the book of Evans, and show compact embedding into Hoelder spaces \(C^{0\,\gamma}\).  \\ \\ **The proof** of the first part of Rellich-Kondarchov's compactness theorem follows from extension, Kolmogorov-Riesz compactness theorem, and interpolation in \(L^p\). This way avoids the long regularization + Arzela-Ascoli argument used in the Holden notes (and in PDE book by Evans). In fact the the regularization + Arzela-Ascoli argument is exactly the argument we used in class to proof Kolmogorov-Riesz in the first place (but the proof in the notes of Holden is slightly different).  \\ \\ **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote25.03.2019_GenSobolevIneq_and_RellichKondrachovCompThm.pdf|General Sobolev inequalities and Strong comactness in \(W^{1,p}\)]]  \\ \\ |
 ^ 14  | Compactness (cont.),  \\ Sobolev chain rule, finite differences.  \\ \\ **Application:** Application: Convergence of finite difference approximation for the Porous Medium Equation (PME).  \\ \\ A. About PME (eq'n, background, self-similar solutions, derivation, well-posedness and a priori estimates).  \\ \\ B. The explicit monotone finite difference approximation.  \\ \\ C. A priori estimates for the approximation.  \\ \\ | |  114-116, 126, 128   | **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote06.04.2017_Rellich_ChainRule_and_DifferenceQuotients.pdf|Strong comactness, chain rule, and difference quotients]]  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote05.04.2019_Application_PorousMediumEquation_I.pdf|Porous Medium Equations I: Intro, finite difference approximation, a priori estimates]]  \\ \\  | ^ 14  | Compactness (cont.),  \\ Sobolev chain rule, finite differences.  \\ \\ **Application:** Application: Convergence of finite difference approximation for the Porous Medium Equation (PME).  \\ \\ A. About PME (eq'n, background, self-similar solutions, derivation, well-posedness and a priori estimates).  \\ \\ B. The explicit monotone finite difference approximation.  \\ \\ C. A priori estimates for the approximation.  \\ \\ | |  114-116, 126, 128   | **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote06.04.2017_Rellich_ChainRule_and_DifferenceQuotients.pdf|Strong comactness, chain rule, and difference quotients]]  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote05.04.2019_Application_PorousMediumEquation_I.pdf|Porous Medium Equations I: Intro, finite difference approximation, a priori estimates]]  \\ \\  |
-^ 15  | D. Interpolation in time and compactness.  \\ \\ E. Convergence of the method.  \\ \\ Plan the oral exam.  \\ Dates and organization.  \\ \\  | | | **Only one lecture this week - Monday**  \\ \\ **Reference group meeting**  \\ \\ **Decide on exam date**  \\ \\ | +^ 15  | D. Interpolation in time and compactness.  \\ \\ E. Convergence of the method.  \\ \\ Plan the oral exam.  \\ Dates and organization.  \\ \\  | | | **Only one lecture this week - Monday**  \\ \\ **Reference group meeting**  \\ \\ **Decide on exam date**  \\ \\  **My lecture notes** from this week:  \\ \\ [[http://www.math.ntnu.no/emner/MA8105/2019v/notes/LecNote08.04.2019_Application_PorousMediumEquation_II.pdf|Porous Medium Equations II: compactness, convergence]]  \\ \\ | 
2019-04-08, Espen Robstad Jakobsen