\[ \newcommand{R}{\mathbb{R}} \newcommand{C}{\mathbb{C}} \newcommand{K}{\mathbb{K}} \newcommand{N}{\mathbb{N}} \newcommand{defarrow}{\quad \stackrel{\text{def}}{\Longleftrightarrow} \quad} \]
Inner-product spaces
Let \(X\) be a vector space over \(\K \in \{\R,\C\}\).
Inner-product spaces
An inner product \(\langle \cdot, \cdot \rangle\) on \(X\) is a map \(X \times X \to \K\), \((x,y) \mapsto \langle x,y \rangle\), that is conjugate symmetric
\[
\langle x,y \rangle = \overline{\langle y,x \rangle},
\]
linear in its first argument,
\[
\begin{align}
&\langle \lambda x,y \rangle = \lambda \langle x,y \rangle,\\
&\langle x + y, z \rangle = \langle x , z \rangle + \langle y, z \rangle,
\end{align}
\]
and non-degenerate (positive definite),
\[
\langle x, x \rangle > 0 \quad \text{ for }\quad x \neq 0,
\]
with \(x,y,z \in X\) and \(\lambda \in \K\) arbitrary. The pair \((X,\langle \cdot, \cdot \rangle)\) is called an inner-product space.
- The canonical inner product is the dot product in \(\R^n\): \[ \langle x, y \rangle := x \cdot y = \sum_{j=1}^n x_j y_j. \]
- For matrices in \(M_{n \times n}(\R)\) one can define a dot product by setting \[ \langle A, B \rangle := \mathrm{tr}(B^t A), \] where \(\mathrm{tr}(C) = \sum_{j=1}^n c_{jj}\) is the trace of a matrix \(C\), and \(B^t\) is the transponse of \(B\). Then \[ B^t A = \sum_{j=1}^n b^t_{ij} a_{jk} = \sum_{j=1}^n b_{ji} a_{jk}, \] and \[\mathrm{tr}(B^t A) = \sum_{k=1}^n \sum_{j=1}^n b_{jk} a_{jk} = \sum_{1 \leq j,k \leq n} a_{jk} b_{jk}\] coincides with the dot product on \(\R^{nn} \cong M_{n \times n}(\R)\).
Properties of the inner product
An inner product satisfies \[ \begin{align*} &\text{(i)} \qquad &\langle x, y+ z \rangle &= \langle x, y \rangle + \langle x, z \rangle,\\ &\text{(ii)} \qquad &\langle x, \lambda y \rangle &= \bar\lambda \langle x, y \rangle,\\ &\text{(iii)} \qquad &\langle x,0 \rangle &= \langle 0, x \rangle = 0,\\ &\text{(iv)} \qquad & \text{ If } \langle x, z \rangle &= 0 \text{ for all } z \in X \quad \text{ then } \quad x = 0. \end{align*} \] N.b. By linearity, the last property implies that if \(\langle x, z \rangle = \langle y, z \rangle\) for all \( z \in X\), then \(x = y\).
Inner-product spaces as normed spaces
An inner-product space \((X,\langle \cdot, \cdot \rangle)\) carries a natural norm given by \(\|x\| := \langle x, x \rangle^{1/2} \). To prove this, we need:
> The Cauchy–Schwarz inequality
For all \(x,y \in (X, \langle \cdot, \cdot \rangle)\), \[ | \langle x, y \rangle | \leq \| x\| \|y\|, \] with equality if and only if \(x\) and \(y\) are linearly dependent.
> Inner-product spaces are normed
If \((X,\langle \cdot, \cdot \rangle)\) is an inner-product space, then \( \|x\| = \langle x, x \rangle^{1/2}\) defines a norm on \(X\).
Parallelogram law and polarization identity
Let \((X, \|\cdot\|)\) be a normed space. Then the parallelogram law \[ \| x + y \|^2 + \| x- y\|^2 = 2 \|x\|^2 + 2 \|y\|^2 \] holds exactly if \(\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}\) can be defined using an inner product on \(X\). If so, \[ \langle x, y \rangle = \frac{1}{4} \big( \| x + y \|^2 - \|x - y\|^2 \big), \] if \(X\) is real, and \[ \langle x , y \rangle = \frac{1}{4} \sum_{k=0}^3 i^k \| x + i^k y\|^2, \] if \(X\) is complex.
- Pythagoras' theorem: If \(\langle x,y \rangle = 0 \) in an inner-product space, then \[ \|x + y \|^2 = \|x\|^2 + \|y\|^2, \] which, in \(\R^2\), we recognize as \[ a^2 + b^2 = c^2, \] with \(a,b,c\) the sides of a right-angled triangle.
- If we define \( \langle x, y \rangle := \frac{1}{4} \left( \| x+y\|^2 - \| x - y\|^2 \right) \) in \(\R^2\) using the polarization identity , we see that \[ \begin{align*} \langle x, y \rangle &= \frac{1}{4} \left( ( x_1 + y_1 )^2 + ( x_2 + y_2)^2 \right) - \frac{1}{4} \left( ( x_1 - y_1 )^2 + ( x_2 - y_2)^2 \right) \\ & =\frac{1}{4} \left( x_1^2 + 2x_1y_1 + y_1^2 + x_2^2 + 2x_2 y_2 + y_2^2 \right) - \frac{1}{4} \left( x_1^2 - 2x_1y_1 + y_1^2 + x_2^2 - 2x_2 y_2 + y_2^2 \right)\\ &=x_1 y_1 + x_2 y_2 \end{align*}\] is the standard dot product.
Hilbert spaces
- A complete inner-product space is called a Hilbert space. Similarly, inner-product spaces are sometimes called pre-Hilbert spaces.
- The Banach spaces \(\R^n\), \(l_2(\R)\) and \(L_2(I,\R)\), as well as their complex counterparts \(\C^n\), \(l_2(\C)\) and \(L_2(I,\C)\), all have norms that come from inner products: \[ \langle x, y \rangle_{\C^n} = \sum_{j=1}^n x_j \bar{y_j} \quad \text{ in }\quad \C^n, \] \[ \langle x, y \rangle_{l_2} = \sum_{j=1}^\infty x_j \bar{y_j} \quad \text{ in }\quad l_2, \] and \[ \langle x, y \rangle_{L_2} = \int_I x(s) \overline{y(s)}\,ds \quad \text{ in }\quad L_2. \] (If the spaces are real, there are no complex conjugates.) Thus, they are all Hilbert spaces. In particular, this proves the \(l_2\)- and \(L_2\)-norms defined earlier in this course are indeed norms.
- The space of real-valued bounded continuous functions on a finite open interval, \(BC((a,b),\R)\), can be equipped with the \(L_2\)-inner product. This is a pre-Hilbert space, the completion of which is \(L_2((a,b),\R)\).
Convex sets and the closest point property
- Let \(X\) be a linear space. A subset \(M \subset X\) is called convex if \[x, y \in M \quad \Longrightarrow \quad tx + (1-t)y \in M \quad \text{ for all } \quad t \in (0,1),\] i.e., if all points in \(M\) can be joined by line segments in \(M\).
- Any hyperbox \( \{ x \in \R^n \colon a_j \leq x_j \leq b_j\} \) is convex.
- Intuitively, any region with a 'hole', like \( \R^n \setminus B_1 \), is not convex.
- Linear subspaces are convex: \[ x, y \in M \quad \Longrightarrow\quad \mu x + \lambda y \in M \quad\text{ for all scalars } \mu, \lambda, \] clearly implies that \( t x + (1-t) y \in M\) for all \(t \in (0,1)\).
> Closest point property (Minimal distance theorem)
Let \(H\) be a Hilbert space, and \(M \subset H\) a non-empty, closed and convex subset of \(H\). For any \(x_0 \in H\) there is a unique element \(y_0 \in M\) such that \[ \| x_0 - y_0 \| = \inf_{y \in M} \| x_0 - y \|. \] N.b. The number \(\inf_{y \in M} \| x_0 - y \|\) is the distance from \(x_0\) to \(M\), denoted \(\mathrm{dist}(x_0,M)\).
- In the Hilbert space \(\R^2\):
- The closed unit disk \(\{ x_1^2 + x_2^2 \leq 1\}\) contains a unique element that minimizes the distance to the point \((2,0)\) (namely \((1,0)\)).
- The subgraph \(\{ x_2 \leq x_1^2 \}\) is closed but not convex; it has more than one point minimizing the distance to the point \((0,1)\).
- The open unit ball \(\{ x_1^2 + x_2^2 < 1\}\) is convex but not closed; it has no element minimizing the distance to a point outside itself.
- Let \[ M_n := \mathrm{span} \{ e^{ikx}\}_{k=-n}^n\] be the closed linear span of trigonometric functions \(1, e^{ix}, e^{-ix} \ldots, e^{inx}, e^{-inx} \in L_2((-\pi,\pi),\C)\). For any \(n \in \N\) and any \(f \in L_2((-\pi,\pi),\C)\) there is a unique linear combination of such functions that minimizes the \(L_2\)-distance to \(f\): \[ \int_{-\pi}^\pi \big| f(x) - \sum_{k=-n}^n c_k e^{ikx} \big|^2\,dx = \min_{g \in M_n} \int_{-\pi}^\pi \big| f(x) - g(x) \big|^2\,dx. \] The coefficients \(c_k\) are known as (complex) Fourier coefficients of the function \(f\).