Problem 1 Let $T>0$ and consider the transport equation

$$
\begin{equation*}
L u(x, t):=\left(\frac{\partial}{\partial t}+\left(\frac{2}{3}-x\right) \frac{\partial}{\partial x}+5\right) u(x, t)=0 \quad \text { in } \quad(0,1) \times(0, T) \tag{1}
\end{equation*}
$$

We solve this problem with the explicit upwind finite difference scheme:

$$
\begin{equation*}
L_{h} U_{m}^{n}:=\left(\frac{\Delta_{k}}{k}+\left(\frac{2}{3}-x_{m}\right)^{+} \frac{\nabla_{h}}{h}-\left(\frac{2}{3}-x_{m}\right)^{-} \frac{\Delta_{h}}{h}+5\right) U_{m}^{n-1}=0 \quad \text { in } \quad \mathbb{G} \tag{2}
\end{equation*}
$$

where $a^{ \pm}=\max (\pm a, 0), a=a^{+}-a^{-},|a|=a^{+}+a^{-}$, and the grid is defined by $M, N \in \mathbb{N}, h=\frac{1}{M}, k=\frac{T}{N}$, and

$$
\overline{\mathbb{G}}=\left\{P=\left(x_{m}, t_{n}\right)=(m h, n k): m=0, \ldots, M ; n=0, \ldots, N\right\} .
$$

a) Show that the scheme (2) is a positive coefficient scheme under a CFL type of condition. Compute the constant in the CFL condition.
b) Find the local truncation error τ of (2), where

$$
\tau_{m}^{n}=L u_{m}^{n}-L_{h} u_{m}^{n} \quad \text { for } \quad m=1, \ldots, M-1, n=1, \ldots, N,
$$

for any smooth function u and where $u_{m}^{n}=u\left(x_{m}, t_{n}\right)$.
Hint: In (2) most terms are taken at $t=t_{n-1}$! Taylor expand u and u_{x}.
Let $\bar{Q}_{T}=[0,1] \times[0, T]$ and $\partial^{*} \mathbb{G}$ be the part of the space-time boundary of \mathbb{G} that can be reached by the scheme (2).
c) Determine whether $x=0$ and/or $x=1$ are inflow boundaries. Explain on what part $\partial^{*} Q_{T}$ of the space-time boundary of Q_{T} we must impose initial and boundary conditions.
Give the two stencils of the scheme (2) and explain why

$$
\partial^{*} \mathbb{G}=\{x=0\} \times(0, T) \bigcup\{x=1\} \times(0, T) \bigcup[0,1] \times\{t=0\}
$$

We assume that a CFL condition holds so the scheme (2) is monotone. You may therefore use without proof that it is stable with respect to the right hand side:

$$
L_{h} V_{P}=F_{P} \text { for } P \in \mathbb{G}, \quad V_{P}=0 \text { for } P \in \partial^{*} \mathbb{G} \quad \Longrightarrow \quad \max _{P \in \mathbb{G}}\left|V_{P}\right| \leq \frac{1}{5} \max _{P \in \mathbb{G}}\left|F_{P}\right|
$$

d) Let u and U solve (1) and (2) with the same initial and Dirichlet boundary conditions. Show an error bound of the form

$$
\max _{\left(x_{m}, t_{n}\right) \in \mathbb{G}}\left|u_{m}^{n}-U_{m}^{n}\right| \leq C_{1} h+C_{2} k .
$$

Then show that $C_{1} \leq \frac{2}{15}\left\|u_{x x}\right\|_{L^{\infty}(0,1)}$ and find an expression of C_{2} only in terms numerical constants and norms of derivatives of u.

Problem 2 Consider the boundary value problem

$$
\left.\begin{array}{l}
-L u:=-u_{x x}-(1+x) u_{y y}=0 \quad \text { in } \quad \Omega \\
\left\{\begin{array}{l}
u(0, y)=0 \\
u(x, 0)=0 \\
u(x, y)=1
\end{array} \quad \text { for } \quad(0, y),(x, 0) \in \partial \Omega\right. \tag{4}
\end{array}\right\}
$$

where the domain is the part of the unit square laying inside the circle $x^{2}+y^{2}=\frac{10}{9}$:

$$
Q_{1}:=[0,1] \times[0,1], \quad \Omega:=\left\{(x, y) \in Q_{1}: x^{2}+y^{2} \leq \frac{10}{9}\right\} .
$$

Let \mathbb{G} be an equidistant grid on Q_{1} with step size $h=\frac{1}{3}$:

$$
\overline{\mathbb{G}}:=\left\{\left(x_{i}, y_{j}\right)=h(i, j): i, j=0,1,2,3\right\} .
$$

Note that $x_{1}^{2}+y_{3}^{2}=\frac{10}{9}=x_{3}^{2}+y_{1}^{2}$. Using the method of fattening the boundary combined with central finite differences, we approximate this problem on a subgrid $\overline{\mathbb{G}}_{1} \subset \overline{\mathbb{G}}$. Let $U(P)$ for $P \in \overline{\mathbb{G}}_{1}$ be solution of the resulting scheme.
a) Write down the stencil for the scheme and make a sketch of the whole grid $\overline{\mathbb{G}}_{1}$ where you indicate the fattened boundary.
Give a row-wise enumeration of $\overline{\mathbb{G}}_{1}$ starting from the origin, where you list the node numbers and corresponding coordinates. Which nodes P are boundary nodes, $P \in \partial \mathbb{G}_{1}$?

What boundary condition should be imposed on $U(P)$ for every $P \in \partial \mathbb{G}_{1}$?
b) Let $\vec{U}=(U(P))_{P \in \mathbb{G}_{1}}$ be the vector of U-values at interior nodes in increasing order in the enumeration from a). Find a matrix A and a vector \vec{b} such that

$$
A \vec{U}=\vec{b} \quad \text { where } \quad A=\left(\begin{array}{cccc}
\frac{14}{3} & -1 & -\frac{4}{3} & 0 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) .
$$

Problem 3 Consider the following variational problem/weak formulation:

$$
\begin{equation*}
\text { Find } u \in V \text { such that } \quad a(u, v)=F(v) \quad \forall v \in V, \tag{5}
\end{equation*}
$$

where $V:=\left\{v \in H^{1}(0,1): v(1)=0\right\}$ is a subspace of $H^{1}(0,1)$,

$$
a(u, v)=\int_{0}^{1}\left[7 u_{x}(x) v_{x}(x)-5 u(x) v_{x}(x)\right] d x, \quad \text { and } \quad F(v)=3 v(0) .
$$

a) Find what PDE and boundary value problem (5) is the weak formulation of. Show that a is continuous and coersive on $V \times V$.
Hint: You may use that $\|v\|_{L^{2}} \leq\left\|v_{x}\right\|_{L^{2}}$ for $v \in V$.
b) Approximate problem (5) using the \mathbb{P}_{1} finite element method on a uniform $\operatorname{grid} x_{i}=i h, i=0, \ldots, M$ with $h=1 / M$. Show that this method can be expressed as a linear system

$$
A \vec{U}=\vec{F} .
$$

Compute the stiffness matrix A and the load vector \vec{F} for arbitrary M.

