Norwegian University of Science and Technology

MA0301 Elementary discrete mathematics Spring 2018

Solutions to exercise set 4

1 15.1.1c) $w x+\bar{y}+y z=1 \cdot 1+\overline{0}+0 \cdot 0=1+1+0=1$
d)

$$
\begin{aligned}
(w x+y \bar{z})+w \bar{y}+\overline{(w+y)(\bar{x}+y)} & =(1 \cdot 1+0 \cdot \overline{0})+1 \cdot \overline{0}+\overline{(1+0)(\overline{1}+0)} \\
& =(1+0)+1+\overline{1 \cdot 0} \\
& =1
\end{aligned}
$$

15.1.2a) $x+x y+w=1+1 y+w=1$
b) $x y+w=y+w$. All assignments of values except $y=w=0$ give the expression the value 1. $4-1=3$ in total.

2 15.1.11a)

$$
\begin{aligned}
x y+(x+y) \bar{z}+y & =x y+x \bar{z}+y \bar{z}+y \\
& =x \bar{z}+(x+\bar{z}+1) y \\
& =x \bar{z}+1 \cdot y \\
& =x \bar{z}+y
\end{aligned}
$$

15.1.12) We see that x must be 0 , because otherwise the left side of the first equation would be 1 . This means we can simplify the first equation to $0+\overline{0} \cdot y=y=0$ and the second to $\overline{0} \cdot y=\overline{0} \cdot z \Longrightarrow z=y=0$. Putting all this into the third equation gives $\overline{0} \cdot 0+\overline{0} \cdot \overline{0}+0 w=\overline{0} \cdot w \Leftrightarrow 1=w$. Thus the only possible solution is $(x, y, z, w)=(0,0,0,1)$, and this satisfies all the equations.
$3 \quad$ i) $(x+\bar{y}) \cdot(x+\bar{z}) \cdot(y+\bar{x})$
ii) $(x+y+\bar{z}) \cdot(x+\bar{y}+z)$
iii) $x+y+x \cdot 1 \cdot(z+0)$

4 i) $x y \bar{x} z=(x \bar{x}) y z=0 y z=0$ (Inverse law)
ii) $x y z y=x(y y) z=x y z$ (Idempotent law)

5 3.2.4a)
i) True, all numbers divisible by 8 are also divisible by 4 , and all numbers divisible by 4 are divisible by 2 .
ii) Both inclusions are false: $2 \in A-C$ and $4 \in C-E$.
iii) False: $3 \in B-D$.
iv) True.
v) True.
vi) This is equivalent to $A \subseteq D$, which is false, as $2 \in A-D$.
b)
i) $C \cap E=E$, since $E \subseteq C$.
ii) $B \cup D=B$, since $D \subseteq B$.
iii) $A \cap B=\{n \in \mathbf{Z} \mid n$ is divisible by 2 and 3$\}=\{n \in \mathbf{Z} \mid n$ is divisible by 6$\}=D$
iv) $B \cap D=D$, since $D \subseteq B$.
v) $\frac{A}{A}$ is the set of even integers, so \bar{A} is the set of odd integers. We can write $\bar{A}=\{2 n+1 \mid n \in \mathbf{Z}\}$.
vi) $A \cap E=E$, since $E \subseteq A$.
$63.2 .17 \mathrm{~b})$

$$
\begin{aligned}
(A \cap B) \cup(A \cap B \cap \bar{C} \cap D) \cup(\bar{A} \cap B) & =((A \cup \bar{A}) \cap B) \cup(A \cap D \cap \bar{C} \cap B) \\
& =(\mathcal{U} \cup(A \cap D \cap \bar{C})) \cap B \\
& =\mathcal{U} \cap B \\
& =B
\end{aligned}
$$

Here we have used distributive law, inverse law, domination law and identity law.
d)

$$
\begin{aligned}
\bar{A} \cup \bar{B} \cup(A \cap B \cap \bar{C}) & =(\bar{A} \cup \bar{B} \cup A) \cap(\bar{A} \cup \bar{B} \cup B) \cap(\bar{A} \cup \bar{B} \cup \bar{C}) \\
& =(\mathcal{U} \cup \bar{B}) \cap(\bar{A} \cup \mathcal{U}) \cap(\bar{A} \cup \bar{B} \cup \bar{C}) \\
& =\mathcal{U} \cap \mathcal{U} \cap(\bar{A} \cup \bar{B} \cup \bar{C}) \\
& =\bar{A} \cup \bar{B} \cup \bar{C}
\end{aligned}
$$

7

$$
\begin{aligned}
(p \wedge(\neg s \vee q \vee \neg q)) \vee((s \vee t \vee \neg s) \wedge \neg q) & \Leftrightarrow(p \wedge(\neg s \vee T)) \vee((t \vee s \vee \neg s) \wedge \neg q) \\
& \Leftrightarrow(p \wedge T) \vee((t \vee T) \wedge \neg q) \\
& \Leftrightarrow p \vee(T \wedge \neg q) \\
& \Leftrightarrow p \vee \neg q
\end{aligned}
$$

8 15.1.1a) $\overline{x y}+\bar{x} \cdot \bar{y}=\overline{1 \cdot 0}+\overline{1} \cdot \overline{0}=\overline{0}+0 \cdot 1=1+0=1$
b) $w+\bar{x} y=1+\overline{1} \cdot 0=1+0=1$
15.1.2c) $\bar{x} y+x w=\overline{1} y+1 w=0 y+w=w$

The assignments of values for w and y that give the expression the value 1 are $(w, y)=(1,0)$ and $(w, y)=(1,1)$.
d) $\bar{x} y+w=\overline{1} y+w=0 y+w=w$, so we get the same answer as in a).

9 15.1.10) Suppose the variables do not all have the same value. Then one of them must be 0 , which means that the right side of the equation has value 0 , so $x+y+z=0$. But this implies $x=y=z=0$, which is a contradiction. Thus our assumption that the variables do not have the same value is wrong, which was what we wanted to prove.
15.1.11b) $x+y+\overline{\bar{x}+y+z}=x+y+\overline{\bar{x}} \cdot \bar{y} \cdot \bar{z}=x+y+x \cdot \bar{y} \cdot \bar{z}=x(1+\bar{y} \cdot \bar{z})+y=x+y$
c)

$$
\begin{aligned}
y z+w x+z+[w z(x y+w z)] & =(y+1) z+w x+w z x y+w w z z \\
& =z+w x+w x z y+w z \\
& =(1+w) z+w x(1+z y) \\
& =z+w x
\end{aligned}
$$

10 Suppose $x=0$. Then the first equation simplifies to $y=y$, and the second to $0=0$, so both are true. Suppose instead $x=1$. Then the first equation becomes $1=y$ and the second $y=1$. We see that in both cases, the equations are equivalent, so one is true if and only if the other is.

11 i) $x \cdot \bar{y}+\overline{\bar{z}} y$
ii) $(0 \cdot x+y) \cdot(x+\bar{y}+z)$
iii) $(x+y) \cdot 0+1 \cdot x+z$
$12 \quad$ i) $x y \bar{z} y x=x x y y \bar{z}=x y \bar{z}$
ii) $x y \bar{z} y \bar{x} \bar{z}=(x \bar{x}) y \bar{z} y \bar{z}=0 y \bar{z} y \bar{z}=0$

13 3.2.17a) $A \cap(B-A)=A \cap B \cap \bar{A}=(A \cap \bar{A}) \cap B=\emptyset \cap B=\emptyset$
c) $(A-B) \cup(A \cap B)=(A \cap \bar{B}) \cup(A \cap B)=A \cap(\bar{B} \cup B)=A \cap \mathcal{U}=A$

$$
\begin{aligned}
p \rightarrow(q \vee r) & \Leftrightarrow \neg p \vee(q \vee r) \\
& \Leftrightarrow \neg(p \wedge \neg q) \vee r \\
& \Leftrightarrow(p \wedge \neg q) \rightarrow r
\end{aligned}
$$

