MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2018

1. Homework Set 5

Exercise 1. (Grimaldi, 5. ed., Exercises 4.1, page 208) Exercise 1 a), b), c)
Exercise 2. Let $Y:=\{1,2,3,4, \ldots, 600\}$. Use the inclusion-exclusion principle to find the numbers of positive integers in Y that are not divisibile by 3 or 5 or 7 .

Exercise 3. Use the principle of induction to show that for all natural numbers $n, 4 \sum_{i=1}^{n} i(i+$ $2)(i+4)=n(n+1)(n+4)(n+5)$.

Exercise 4. (Grimaldi, 5. ed., Exercises 4.1, page 208) Exercise 12
Exercise 5. (Grimaldi, 5. ed., Exercises 4.1, page 209) Exercise 16
Exercise 6. (Grimaldi, 5. ed., Exercises 4.1, page 209) Exercise 17
Exercise 7. Use the laws of set theory to show for arbitrary sets A, B, C that:
(1) If $(A \cup B) \subseteq(A \cap B)$ then $A=B$.
(2) $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
(3) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

2. Classroom Set 5

Exercise 8. (Grimaldi, 5. ed., Exercises 4.1, page 208) Exercise 2
Exercise 9. Use the principle of induction to show that for all $n \in \mathbb{Z}^{+}, \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
Exercise 10. Use the principle of induction to show that for all $n \in \mathbb{Z}^{+}, n^{3}+3 n^{2}+2 n$ is a multiple of 6 .

Exercise 11. (Grimaldi, 5. ed., Exercises 4.1, page 209) Exercise 19
Exercise 12. (Grimaldi, 5. ed., Exercises 4.1, page 210) Exercise 27
Exercise 13. Let

$$
C:=\{n \in \mathbb{N} \mid n \text { is a multiple of } 12\}
$$

and

$$
D:=\{n \in \mathbb{N} \mid n \text { is a multiple of } 2 \text { and } n \text { is a multiple of } 6\} .
$$

Which of the statements is true: $C \subseteq D, D \subseteq C, C=D$.

Exercise 14. By using rules of inference, show that the following arguments are true:

$$
\begin{aligned}
\text { i) } & \neg(a \wedge b) \wedge(\neg c \rightarrow b) \rightarrow(a \rightarrow c) \\
\text { ii) } & \neg(\neg p \vee q) \wedge(\neg z \rightarrow \neg s) \wedge((p \wedge \neg q) \rightarrow s) \wedge(\neg z \vee r) \rightarrow r
\end{aligned}
$$

