Lecture 13 and 14: The wave equation

1. Derivation of the wave equations

- Model problem: 1-dimensional vibrating string which is fixed at $x=0$ and $x=2$
- $u(x, t)$ describes
- Assume uniform maSS density $g(x)[\mathrm{lg} / \mathrm{m}]$, no gravity forces \Rightarrow only forces acting are stretch fores/ tension acting pavallely to the string

- Since we assume that there is mo hocizoutel movement of the point \bar{x}, the honzontel component of F_{1} and F_{2} must canal out each other: $\left(\vec{F}_{1}\right)_{x}=T=-\left(\vec{F}_{2}\right)_{x}$.
- Using Newton's second law $\vec{F}=m \vec{a}$, the vertical acceleration is groom by $h g \partial_{t}^{2} u(x, t)=T_{2}-T_{1}$, or

$$
\begin{aligned}
& \rho \partial_{t}^{2} \partial_{t}^{2} u(x, t)=\frac{T_{2}-T_{1}}{\omega} \\
& \frac{\rho}{T} \partial_{t}^{2} \omega^{2}(x, t)=\frac{\frac{T_{3}}{T}-\frac{T_{1}}{T}}{h}=\frac{\partial_{x} w\left(x+P_{0}, t\right)-\partial_{x} u(x, t)}{\omega} \rightarrow \partial_{x} u(x, t) .
\end{aligned}
$$

Setting $c^{2}=\frac{I}{\rho}$ we obtain the wave equations:

$$
\partial_{t}^{2} u(x, t)=c^{2} \partial_{x}^{2} u(x, t) \quad x \in(0,2), t>0 .
$$

+ Dinillet bic. $u(0, t)=u(2, t)=0$.
- We heed abs some initial condition.
i.c. I $\quad u(x, 0)=f(x) \quad$ (initial displacement).
i.c. II $\partial_{t} u(x, 0)=g(x) \quad$ (initial velocity).

2. Solution of the wave equation on an interval

Subtitle: Separation of vanables again
 conditions i.c. II: $\partial_{t} u(x, 0)=g(x) \quad x \in \mathbb{}$

- We proceed similar as for the heat equation and thy to construct a solutions via the method of separation of variables:
- Anscetz: $u(x, t)=F(x) g(t)$
- Plugging this into the PDE yields

$$
g^{\prime \prime}(t) F(x)=c^{2} g(t) F^{\prime \prime}(x) \Rightarrow \frac{g^{\prime \prime}(t)}{c^{2} g(t)}=\frac{F^{\prime \prime}(x)}{F(x)} \stackrel{\bullet}{\square}-k
$$

for some so far unknown constant k since the variables x and t vary independent of each other. Thus we again left with
1)

$$
F^{\prime \prime}(x)+E F(x)=0
$$

$$
\text { 2) } \quad g^{\prime \prime}(t)+\operatorname{lec}^{2} g(t)=0
$$

Starting withe 1) the exact considerations as in dectuke II we know that the general solution for 1) can we written aS

$$
F(x)= \begin{cases}\tilde{A} e^{\sqrt{-\epsilon} x}+\tilde{B} e^{-\sqrt{-E}} x & \dot{b} \neq 0 \\ \tilde{A}+\tilde{B} x & \dot{L}=0\end{cases}
$$

As discussed in dectule II, we can vile out the boring I non-worting case $B=0$ and $B<0$. For $i>0$ $\sqrt{-E}=i \sqrt{B}$ is imaginary and thees

$$
\begin{aligned}
F(x) & =\tilde{A} e^{i \sqrt{B} x}+\tilde{B} e^{-i \sqrt{R} x} \\
& =A \cos \sqrt{B} x+B \sin \sqrt{\vec{R}} x
\end{aligned}
$$

and taking Divide bic. into account led us to a nontrivial solution F if

$$
\begin{aligned}
k & =\left(\frac{n \pi}{2}\right)^{2} \quad n \in \mathbb{W}, \quad \text { then } \\
F(x) & =\sin \frac{n \pi}{2} x
\end{aligned}
$$

solves 1) and respects our Dividlet b.c.

- Turning to 2). For our particular choice of $E=\left(\frac{4 \pi}{\alpha}\right)^{2}$, we have

$$
g^{4}(t)+\left(\frac{\operatorname{cn} \pi}{2}\right)^{2} g(t)=0
$$

with the general solution

$$
g_{n}(t)=A_{n} \cos \frac{c n \pi}{2} t+B_{n} \sin \frac{c n \pi}{2} t_{1}
$$

which in turns gives us a fannily of functions

$$
\begin{aligned}
u_{w}(x, t) & =F(x) g_{n}(t) \\
& =\left(A_{h} \cos \frac{c n \pi}{2} t+B_{n} \sin \frac{c n \pi}{2} t\right) \sin \frac{n \pi}{2} x
\end{aligned}
$$

- We still need to incorporate the initial conditions ∇_{0}
- As before we superimpose our solution family

$$
u(x, t)=\sum_{h=1}\left(A_{h} \cos \frac{c n \pi}{2} t+B_{h} \sin \frac{c \omega \pi}{2} t\right) \cdot \sin \frac{n \pi}{2} x
$$

- Wow ty to incorporate i.c. I which yields for $t=0$:

$$
f(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n_{n}}{2} x
$$

Thus, we need to develop (again ∇) $f(x)$ into a Fowsir / sim semis, and thins $\left\{A_{n}\right\}_{n=1}^{\infty}$ are the Tower coefficients to the odd extension f_{0} of f :

$$
A_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \frac{n \pi}{2} x d x
$$

- Incorporating i.c. IL gives

$$
\begin{aligned}
& g(x)= \partial_{t} k(x, 0)=\sum_{n=1} \\
&\left(\frac{-c w \pi}{2} \cdot A_{n} \cdot \sin \frac{c \omega \bar{n} t}{2} t+\right. \\
&\left.\frac{c w \bar{n}}{2} \cdot B_{n} \cdot \cos \frac{c w n}{2} t\right)\left.\right|_{t=0}
\end{aligned}
$$

$$
\text { - } \sin \frac{w \pi}{2} x
$$

$$
=\sum_{n=1} \underbrace{\frac{c h \pi}{2}}_{x} \cdot B_{n} \sin \frac{n \pi}{2} x .
$$

$=: \bigotimes_{w}$

- So $\left\{\tilde{B}_{n}\right\}_{n=1}^{a}$ are the Fommit coefficunts of the odd extension g_{0} i and thus

$$
B_{w}=\frac{2}{\operatorname{cn\pi }} \int_{0}^{2} g(x) \sin \frac{n \pi}{2} x d x
$$

Theorem 1
The wave equation of the forms 1 las the solutions

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{c n \pi}{2} t+B_{n} \sin \frac{c n \pi}{2} t\right) \sin \frac{n \pi}{2} x
$$

with

$$
\begin{aligned}
& A_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \frac{n \pi}{2} x d x, \\
& B_{n}=\frac{2}{c n \pi} \int_{0}^{2} g(x) \sin \frac{n \pi}{2} x d x .
\end{aligned}
$$

Example: See knyseig, Section 12.3. Example 1:

- Vibrating Sling if the Initial Deflection is Triangular".

3. Solution for a flute

Problem we consider is now

$$
\int P D E \quad \partial_{t}^{2} w(x, t)=c^{2} \partial_{x}^{2} u(x, t), x \in(0,2), t>0
$$

2 Venmann bic $\partial_{x} u(0, t)=\partial_{x} u(2, t)=0$

$$
\begin{array}{ll}
\text { i.c. I } & u(x, 0)=\hat{f}(x) \\
\text { i.c. II } & \partial_{t} u(x, 0)=g(x)
\end{array}
$$

$$
\partial_{t} u(x, 0)=g(x) .
$$

We won't solve this problem in detail, the idea is exactly
the same as imo Sections 2, see also Doreen's $2 N$.
To work out the details starting from Jorten's 2. N. and section 2 will be part of Exercise set 7 .
4. Wave equation on the entire x-Axis: D'Alembert

We want to solve

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u(x, t)=c^{2} \partial_{x} u(x, t) \quad x \in R, t>0 \\
u(x, 0)=f(x) \quad \text { i.c.I } \\
\partial_{t} u(x, 0)=g(x) \quad \text { i.c. II }
\end{array}\right.
$$

- Ansate: $u(x, t)=\phi(x+c t)+\psi(x-c t)$ for two functions $\phi: \mathbb{R} \rightarrow R, \Psi: Q \rightarrow R$ which are twice differentiable. Thew

$$
\begin{aligned}
\partial_{t}^{2} u(x, t) & =c^{2} \phi^{\prime \prime}(x+c t)+c^{2} \psi^{\prime \prime}(x-c t) \\
c^{2} \partial_{x}^{2} u(x, t) & =c^{2} \phi^{\prime \prime}(x+c t)+c^{2} \psi^{n}(x-c t)
\end{aligned}
$$

- How to incorporate initial data?

$$
\text { 3.C.I, } \quad w(x, 0)=\phi(x)+\psi(x)=f(x)
$$

$$
\text { 3.C.I: } \partial_{t} u(x, 0)=c \phi^{\prime}(x)-c \psi^{\prime}(x)=g(x)
$$

integrate

$$
\stackrel{\text { integrate }}{\Rightarrow} \phi(x)-\psi(x)=\frac{1}{C} S^{x} g(x)+D
$$

1) $\oplus 2$) gives

$$
2 \phi(x)=f(x)+\frac{1}{c} \int^{x} g(x)+D
$$

1) $\Theta 2$ gives

$$
2 \psi(x)=f(x)-\frac{1}{C} S^{x} \delta^{(x)}-D
$$

- If we insert this into our ansate $h(x, t)=\phi(x+c t)+\psi(x-c t)$:

$$
\begin{aligned}
& u(x, t)=\phi(x+c t)+\psi(x-c t) \\
= & \frac{1}{2} f(x+c t)+\frac{1}{2 c} \int^{x+c t} 8+\frac{1}{2} D \\
+ & \frac{1}{2} f(x-c t)-\frac{1}{2 c} \int^{x-c t} g-\frac{1}{2} \frac{1}{x+c t} \\
= & \frac{1}{2}(f(x+c t)-f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x} g(y) d y .
\end{aligned}
$$

- We summaries this in the following

Theorem 2
The problems

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u(x, t)=c^{2} \partial_{x} u(x, t) \quad x \in R, t>0 \\
u(x, 0)=f(x) \quad \text { i.c.I } \\
\partial_{t} u(x, 0)=g(x) \quad \text { i.c. II }
\end{array}\right.
$$

has the solution

$$
u(x, t)=\frac{1}{2}(f(x+c t)-f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y
$$

