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Problem 1

In this problem, you will evaluate several independent statements about minimisers of func-
tions. For each of the statements, mark them as True or False.

a) If a function f : Rn → R is C2 and convex, then f has a minimiser x∗ ∈ Rn.

Solution: False
Many counterexamples, for example f(x) = aTx for a nonzero vector a and f(x) = ex1 .

b) If f is C2 and a point x∗ is such that ∇f(x∗) = 0 and ∇2f(x∗) is symmetric positive
definite, then x∗ is a local minimiser of f .
Solution: True
This is (a weaker version of) Theorem 2.4 in N&W.

c) If a point x∗ is a local minimiser of a constrained optimisation problem with continuously
differentiable objective function f and constraint functions ci (which could be equality
constraints, inequality constraints, or both), then x∗ is a KKT point.
Solution: False
Some extra condition on the constraints, such as LICQ is needed. A counterexample is
given by the optimisation problem

min
(x,y)

x s.t.
{

y = 0,
y − x2 = 0,

which has a global minimiser in (0, 0), but (0, 0) is not a KKT point.

d) If a constrained optimisation problem has c2 objective function f and constraint functions
ci, a point x∗ is a KKT point of the optimisation problem, with Lagrange multiplier λ∗,
and

wt∇2
xxl(x∗, λ∗)w > 0,

holds for all nonzero w in the critical cone at x∗, then x∗ is a local minimiser.
Solution: True
This is Theorem 12.6 in N&W.
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Problem 2

For each of the optimisation problems below, decide whether they are convex problems or not.

a)
min
(x,y)

(x− 1)4 + y4 − x2 + y

Solution: Not convex.
For example, at (1, 0), the Hessian is

[
−2 0
0 0

]
, which is not positive semidefinite.

b)
min
x∈Rn

1
2x

TAx− bTx

where A is an n× n symmetric positive definite matrix and b is a vector in Rn.
Solution: Convex.

c)
min
(x,y)

x2 − y2 s.t. x− 2y = 0.

Solution: Convex.
This is a tricky one. The function x2 − y2 is not convex on R2, however, on the line
x− 2y = 0, convexity holds.

d)
min
(x,y)

x2 + y2 s.t. y ≥ sin x

Solution: Not convex.
The domain defined by y ≥ sin x is not convex.

e)
min
(x,y)

x2 − 2x+ x2y2 − 2xy

Solution: Not convex.
At the origin, the Hessian is

[
2 −2
−2 0

]
, which is not positive semidefinite.
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Problem 3 Consider the constrained optimisation problem:

min
(x,y)

y3 − 3
2y

2 + 2
3y − x

3 s.t.
{

y ≥ 0,
1− y − x2 ≥ 0.

Identify all KKT points and among the KKT points, the points that also satisfy the second
order necessary conditions for optimality.

Solution: The gradient of the objective function f(x, y) = y3 − 3
2y

2 + 2
3y − x

3 is:

∇f(x, y) =
[

−3x2

3y2 − 3y + 2
3

]
,

and the gradients of the constraints c1(x, y) = y, c2(x, y) = 1− y − x2 are:

∇c1(x, y) =
[
0
1

]
, ∇c2(x, y) =

[
−2x
−1

]
.

We can now consider the given points:

• (0, 0): c1(0, 0) = 0 c2(0, 0) = 1 > 0, so it is a feasible point, c1 is active, c2 is not.

∇f(0, 0) =
[
0
2
3

]
, ∇c1(0, 0) =

[
0
1

]
.

We have ∇f(0, 0) = 3
2∇c1(0, 0), so (0, 0) is a KKT point.

•
(
0, 1

3

)
. Feasible point, none of the constraints are active. ∇f(0, 1

3) =
[
0
0

]
, so

(
0, 1

3

)
is a

KKT point.

•
(
0, 2

3

)
. Feasible point, none of the constraints are active. ∇f(0, 2

3) =
[
0
0

]
, so

(
0, 2

3

)
is a

KKT point.

• (0, 1). c1(0, 1) = 1 > 0, c2(0, 1) = 0. Feasible point, c1 is inactive, c2 is active.

∇f(0, 1) =
[
0
2
3

]
, ∇c2(0, 1) =

[
0
−1

]

The solution of ∇f(0, 1) = λ2∇c2(0, 1) is λ2 = −2
3 . Since λ2 < 0, (0, 1) is not a KKT

point.



TMA4180 May 25th 2020 Page 4 of 10

• (−1, 0). Here both c1 and c2 are active. We have

∇f(−1, 0) =
[
−3

2
3

]
∇c1(−1, 0) =

[
0
1

]
∇c2(−1, 0) =

[
2
−1

]

∇f(−1, 0) = λ1∇c1(−1, 0) + λ2∇c2(−1, 0) is a linear equation in λ1, λ2 with solution

λ1 = −5
6 , λ2 = −3

2 .

The Lagrange multipliers are negative, so (−1, 0) is not a KKT point.

• (1, 0). Here both c1 and c2 are active. We have

∇f(1, 0) =
[
−3

2
3

]
∇c1(1, 0) =

[
0
1

]
∇c2(1, 0) =

[
−2
−1

]

∇f(1, 0) = λ1∇c1(1, 0) + λ2∇c2(1, 0)
is a linear equation in λ1, λ2 with solution

λ1 = 13
6 , λ2 = 3

2 .

The Lagrange multipliers are positive, so (−1, 0) is a KKT point.

For the second part, we only consider the points that are KKT points and check if they also
satisfy the second order necessary condtitions, that is wT∇2L(x∗, y∗, λ∗)w ≥ 0 for all w in the
critical cone.

• (0, 0). The critical cone is C(0, 0) =
{[
p
0

]
, p ∈ R

}
. The Hessian of the Lagrangian is

∇2f(0, 0)− 3
2∇

2c(0, 0) = ∇2f(0, 0) =
[
0 0
0 −3

]

We now see that [
p 0

] [0 0
0 −3

] [
p
0

]
= 0

So (0, 0) satisfies the necessary conditions for second order minima. (But not the suffi-
cient conditions.)
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•
(
0, 1

3

)
No active constraints, so the critical cone is all of R2. The Hessian of f is

∇2f(0, 1
3) =

[
0 0
0 −1

]

which is not positive semidefinite.
(
0, 1

3

)
does not satisfy the second order necessary

conditions.

•
(
0, 2

3

)
No active constraints, so the critical cone is all of R2. The Hessian of f is

∇2f(0, 2
3) =

[
0 0
0 1

]

which is not positive semidefinite.
(
0, 2

3

)
satisfies the second order necessary conditions.

• (1, 0) Both c1 and c2 are active and λ1 > 0, λ2 > 0. The critical cone is given by
∇c1(1, 0)Tw = 0,∇c2(1, 0)Tw = 0 or[

0 1
−2 −1

] [
w1
w2

]
= 0.

The only solution is w =
[
0
0

]
. The critical cone is only the origin and

wT∇2L(1, 0, λ∗)w ≥ 0

holds trivially when w = 0.
(1, 0) satisfies the second order necessary conditions.

Problem 4 Imagine you wanted to solve the following optimisation problem numerically

min
x∈Rn

ω2

2

n∑
i=1

x2
i +

n−1∑
i=1

exp(xi+1 − xi)

where ω is a non-zero real number and n = 1 000 000.

Explain how you would approach this problem.

That is: explain what method you would use, and any details of the implementation you
consider critical.
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Justify your choices.

Solution: The problem is an unconstrained optimisation problem. Furthermore, each of the
functions

ω2

2 x2
i and exp(xi+1 − xi)

are convex, so the problem is even convex.

The problem is that n = 106. This means that it is not feasible to store full n× n (nor to do
matrix-vector products and much less to solve linear systems with full matrices.)

Line search methods are possible, but we have to be careful about how we find search directions.
Due to the large dimension, BFGS is not possible, nor is a naive implementation of Newton’s
method.

It is possible to use gradient descent or conjugate gradient methods such as Fletcher–Reeves
for search directions, but these methods are going to be slow (especially gradient descent.)1

A faster method for this optimisation problem is limited-memory BFGS, but the best algorithm
is probably Newton’s method where we take advantage of the structure of the problem: ∂2f(x)

∂xi∂xj

is only nonzero when j = i − 1, j = i or j = i + 1. Therefore the Hessian is tridiagonal, and
we can use an efficient, O(n), solver for tri-diagonal systems, such as the Thomas algorithm,
to solve

Hfkp = −∇fk

So we can use a line search method with Newton’s method to solve the optimisation problem.
Safeguards to ensure we get descent directions are not needed since the problem is convex. For
the line search we can use Wolfe condtions, strong Wolfe conditions or Armijo backtracking, (or
other conditions) Important details that have to be observed to obtain quadratic convergence
is that α = 1 should be used if feasible, and that c1 ≤ 1

2 in the Armijo condition.

Problem 5

Consider the unconstrained optimization problem:

min
(x,y)

x2 − 2x+ x2y2 − 2xy
1Nevertheless, suggesting Fletcher–Reeves with strong Wolfe conditions and c2 < 1

2 would score full points
here.
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a) Determine all stationary points of the objective function and determine if they are local
minima.
Solution:

∇f(x, y) =
[
2x− 2 + 2xy2 − 2y

2x2y − 2x

]

Setting ∂f
∂y

(x, y) = 0, we get

x2y − x = 0⇒ x = 0 or xy = 1

Inserting x = 0 into ∂f
∂x

(x, y) = 0, we get y = −1.
xy = 1 makes ∂f

∂y
(x, y) = 0 simplify to

2x− 2 = 0

with solution x = 1, xy = 1 then implies y = 1.
In conclusion, the stationary points are (0,−1) and (1, 1).
The Hessian of f is

Hf(x, y) =
[

2 + 2y2 4xy − 2
4xy − 2 2x2

]
Now

Hf(0,−1) =
[

4 −2
−2 0

]
with determinant −4. (0,−1) is therefore not a minimum.

Hf(1, 1) =
[
4 2
2 2

]
This matrix has trace 6 and determinant 4, so it is positive definite. (1, 1) is therefore a
local minimum.

b) Starting at x0 = [0, 0]>, compute one step of a line search method using steepest descent
as the search direction. Ensure that the line search step satisfies the Wolfe conditions
with c1 = 1

4 and c2 = 3
4 .

Solution: The steepest descent direction is given by

p0 = −∇f(0, 0) =
[
2
0

]

and
Φ(α) = f(x0 + αp0) = f(2α, 0) = 4α2 − 4α
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To satisfy the Armijo condition, we need

Φ(α) ≤ Φ(0) + c1Φ′(0)α

4α2 − 4α ≤ 1
4 · (−4) · α

which implies

0 ≤ α ≤ 3
4 ,

and to satisfy the curvature condition, we need

Φ′(α) ≥ c2Φ′(0)

8α− 4 ≥ 3
4 · (−4) which implies

α ≥ 1
8 .

To satisfy both the Armijo condition and the curvature condition, we need

1
8 ≤ α ≤ frac34

e.g. α = 1
2 which gives x1 = x0 + 1

2p0 = (1, 0).

c) In part b), could you have used Newton as search direction instead?
Solution: Newton’s method at (0, 0) gives

Hf(0, 0)p0 = −∇f(0, 0)[
2 −2
−2 0

]
pN =

[
2
0

]

with solution pN =
[

0
−1

]
. We then get that ∇f(0, 0)TpN = 0, so Newton’s method does

not give a descent direction in this case.

Problem 6 We study linear programs of the form

min
x∈Rn

cTx s.t.


∑n

i=1 xi = 1,
xi ≥ 0, for 1 ≤ i ≤ n,

where c ∈ Rn.
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a) Write the linear program in standard form.
Solution: The program is pretty much in standard form already, we only need to replace
the sum ∑n

i=1 xi = 1 with an inner product.

min
x
cTx subject to

{
jTx = 1
x ≥ 0

with j =
[
1 1 . . . 1

]T
b) Show that the optimal value of the linear program is

p = min
1≤i≤n

ci,

and describe the set of optimal solutions for all c ∈ Rn.
Solution: There are several ways to proceed, the most elegant is probably to consider
the dual problem. In this case there is only one equality constraint, λ ∈ R, A = jT and
b = 1.
The dual problem can be written

max 1 · λ subject to jλ ≤ c

or
max λ subject to λ ≤ ci for all i

The optimal value of the dual problem is given by the most restrictive constraint, so
q = λ∗ = min1≤i≤n ci.
For linear programs, the optimal values of the primal and dual problem are equal, so
p = q = min1≤i≤n ci.
For the second part, we look at the KKT conditions.

jλ+ µ = c (1)
j>x = b (2)
x ≥ 0 (3)
µ ≥ 0 (4)

xiµi = 0 for all i (5)

We know λ = p = mini ci.
For the further discussion, we define M = {i s.t. ci = p}, and Mc = {i s.t. ci > p}.
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For i ∈Mc, we have, by (1):
µi = ci − p > 0

and by (5),
xi = 0 for i ∈Mc

In other words, xi can only be nonzero for i ∈ M, and if x in addition satisfies the
constraints, that is xi ≥ 0 and∑i xi = 1, we have

cTx =
n∑

i=1
cixi [xi = 0 for i ∈Mc]

=
∑
i∈M

cixi [ci = p for i ∈M]

= p
∑
i∈M

xi [
∑

i

xi = 1]

= p

So the set of optimal x is given byx ∈ Rn such that

xi = 0 for i ∈Mc,

xi ≥ 0 for i ∈M,∑
i∈M

xi = 0


where M is the set of indices i such that ci = min1≤k≤n ck, and Mc its complement.


