Problems 1–6, 7a), 7b), 8 and 9 all have equal weight.

Problem 1 For which values $a \in \mathbb{R}$ is the matrix

[1	0	1]
0	2a	-4
a	1	-a

invertible?

Problem 2 Compute $\operatorname{Re} z$ and $\operatorname{Im} z$ when

$$z = i^{\left(\sqrt{2} + i\sqrt{2}\right)^4} - 3e^{\frac{\pi}{2}i}.$$

Write the answer in the simplest possible way.

- **Problem 3** Let $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & -9 \\ 2 & -1 & 8 \end{bmatrix}.$
 - Obtain a basis for Col A and Null A.
 - Does the system

 $A\boldsymbol{x} = \boldsymbol{b}$

have a solution for all $b \in \mathbb{R}^3$? If it has a solution for a specific b, is the solution unique? Justify your answer.

Problem 4 Solve the initial-value problem

y''(t) - 2y'(t) + 3y(t) = 9t, $y(0) = -1, y'(0) = \sqrt{2}.$

Problem 5 Suppose that $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} are linearly independent vectors in a vector space V. Show that the three vectors

u + v, u + w, and v + w

also are linearly independent.

Problem 6 Let $V \subseteq \mathbb{R}^3$ be the linear span $\operatorname{Sp}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$.

Problem 7 Let *A* be the matrix

$$\begin{bmatrix} 0 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & -2 & -1 \end{bmatrix}.$$

- **a**) Find the eigenvalues of A and compute A^{31} .
- **b**) Solve the initial-value problem

and \bullet determine $\lim_{t \to \infty} \boldsymbol{y}(t)$, if the limit exists.

Problem 8 Use the least-squares method to find the second-order polynomial

$$p(x) = ax^2 + bx + c$$

that minimises the distance to the data points

(That is, find a, b and c.)

Problem 9 Let $\mathcal{M}_{n \times n}(\mathbb{R})$ be the vector space of real-valued $n \times n$ matrices and let $\mathcal{S}_n = \left\{ A \in \mathcal{M}_{n \times n}(\mathbb{R}) : A^\top = A \right\}$ $(A^\top \text{ is the transpose of } A).$

- Give a basis for S_n when n = 2.
- Find dim \mathcal{S}_n for all $n \in \mathbb{N}$.