Problems 1-6, 7a), 7b), 8 and 9 all have equal weight.

Problem 1 For which values $a \in \mathbb{R}$ is the matrix

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 a & -4 \\
a & 1 & -a
\end{array}\right]
$$

invertible?

Problem 2 Compute Rez and $\operatorname{Im} z$ when

$$
z=\mathrm{i}^{(\sqrt{2}+\mathrm{i} \sqrt{2})^{4}}-3 \mathrm{e}^{\frac{\pi}{2} \mathrm{i}}
$$

Write the answer in the simplest possible way.

Problem 3 Let

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
-1 & 3 & -9 \\
2 & -1 & 8
\end{array}\right]
$$

- Obtain a basis for $\operatorname{Col} A$ and Null A.
- Does the system

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

have a solution for all $\boldsymbol{b} \in \mathbb{R}^{3}$? If it has a solution for a specific \boldsymbol{b}, is the solution unique? Justify your answer.

Problem 4 Solve the initial-value problem

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+3 y(t)=9 t, \quad y(0)=-1, \quad y^{\prime}(0)=\sqrt{2}
$$

Problem 5 Suppose that $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} are linearly independent vectors in a vector space V. Show that the three vectors

$$
\boldsymbol{u}+\boldsymbol{v}, \quad \boldsymbol{u}+\boldsymbol{w}, \quad \text { and } \quad \boldsymbol{v}+\boldsymbol{w}
$$

also are linearly independent.

Problem $6 \quad$ Let $V \subseteq \mathbb{R}^{3}$ be the linear span $\operatorname{Sp}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$.

- Find an orthogonal basis for V.
- Compute the orthogonal projection of $\left[\begin{array}{r}3 \\ 2 \\ 1\end{array}\right]$ onto V.

Problem 7 Let A be the matrix

$$
\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 1 & 0 \\
0 & -2 & -1
\end{array}\right] .
$$

a) - Find the eigenvalues of A and \bullet compute A^{31}.
b) - Solve the initial-value problem

$$
\begin{aligned}
& \boldsymbol{y}^{\prime}(t)=A \boldsymbol{y}(t), \quad \boldsymbol{y}(0)=\left[\begin{array}{l}
7 \\
0 \\
3
\end{array}\right] \\
& \text { the limit exists. }
\end{aligned}
$$

and • determine $\lim _{t \rightarrow \infty} \boldsymbol{y}(t)$, if the limit exists.

Problem 8 Use the least-squares method to find the second-order polynomial

$$
p(x)=a x^{2}+b x+c
$$

that minimises the distance to the data points

x	-1	0	1	2
y	1	-2	0	5

(That is, find a, b and c.)

Problem 9 Let $\mathcal{M}_{n \times n}(\mathbb{R})$ be the vector space of real-valued $n \times n$ matrices and let

$$
\mathcal{S}_{n}=\left\{A \in \mathcal{M}_{n \times n}(\mathbb{R}): A^{\top}=A\right\}
$$

(A^{\top} is the transpose of A).

- Give a basis for \mathcal{S}_{n} when $n=2$.
- Find $\operatorname{dim} \mathcal{S}_{n}$ for all $n \in \mathbb{N}$.

