Solutions of 2nd order linear homogenenous ODEs (informal note)

In this note we consider the following linear homogenenous ODE:

$$
\begin{equation*}
y^{\prime \prime}(x)+a y^{\prime}(x)+b y(x)=0 \tag{1}
\end{equation*}
$$

where ' denotes derivative $\frac{d}{d x}$ and a, b are real constants.
Definition: A general solution of (1) is function $y(x)$ of the form

$$
\begin{equation*}
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x) \tag{2}
\end{equation*}
$$

where y_{1}, y_{2} are two linearly independent solutions of (1) and C_{1}, C_{2} are (possibly complex) constants.

Remark:

- For given y_{1}, y_{2} any solution of (1) can be obtained from (2) by a proper choice of C_{1}, C_{2}.
- For the definition of linearly independence and more discussion of general solution, we refer to 10th edition of Kreyszig page 50.

Special solutions of the form $e^{\lambda x}$:
We set $y(x)=e^{\lambda x}$ and insert into (1):

$$
\begin{equation*}
(1) \Longleftrightarrow\left(\lambda^{2}+a \lambda+b\right) e^{\lambda x}=0 \quad \Longleftrightarrow \quad \lambda=\frac{-a \pm \sqrt{a^{2}-4 b}}{2} \text {. } \tag{3}
\end{equation*}
$$

Let λ_{1} and λ_{2} denote the two solutions of (3). We have three different cases:

1	$a^{2}-4 b>0$	$\lambda_{1}, \lambda_{2} \in \mathbb{R}, \lambda_{1} \neq \lambda_{2}$
2	$a^{2}-4 b=0$	$\lambda_{1}=\lambda_{2}=-\frac{a}{2} \in \mathbb{R}$
3	$a^{2}-4 b<0$	$\lambda_{1}=-\frac{a}{2}+i \omega$ and $\lambda_{1}=-\frac{a}{2}-i \omega$ and $\omega=\sqrt{4 b-a^{2}}$

and in each case the corresponding solutions of (1) are

$$
y_{\mathbf{1}}(x)=e^{\lambda_{\mathbf{1}} x} \quad \text { and } \quad y_{\mathbf{2}}(x)=e^{\lambda_{\mathbf{2}} x}
$$

The general solution

Remark:

- If $\lambda_{1} \neq \lambda_{2}$ then y_{1} and y_{2} are linearly independent (check!).
- When $\lambda_{1}=\lambda_{2}=-\frac{a}{2}$, then $\bar{y}_{2}(x):=x y_{1}(x)$ also solve (1) (check!) and is linearly independent of y_{1} (check!).
- When $\lambda_{1}=-\frac{a}{2}+i \omega$ and $\lambda_{1}=-\frac{a}{2}-i \omega$,

$$
\tilde{y}_{1}(x):=\frac{y_{1}+y_{2}}{2}=e^{-\frac{a}{2} x} \cos \omega x \quad \text { and } \quad \quad \tilde{y}_{2}(x):=\frac{y_{1}-y_{2}}{2 i}=e^{-\frac{a}{2} x} \sin \omega x
$$

also solve (1) by superposition (check!), and \tilde{y}_{1} and \tilde{y}_{2} are linearly independent (check!).
By this remark and the definition of general solution, we can now write down the general solution of (1). There are 3 different cases depending on the sign of $a^{2}-4 b$:

General solution of (1):

1	$a^{2}-4 b>0$	$y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x}$
2	$a^{2}-4 b=0$	$y(x)=C_{1} y_{1}(x)+C_{2} \bar{y}_{2}(x)=\left(C_{1}+C_{2} x\right) e^{\lambda_{1} x}$
3	$a^{2}-4 b<0$	$y(x)=C_{1} \tilde{y}_{1}(x)+C_{2} \tilde{y}_{2}(x)=e^{-\frac{a}{2} x}\left(C_{1} \cos \omega x+C_{2} \sin \omega x\right)$

Concluding remarks:

- The quadratic equation found in (3) is called the characteristic equation: $\lambda^{2}+a \lambda+b=0$.
- A more detailed discussion can be found in chapter 2.2 in the textbook "Advanced Engeneering Mathematics" (10 th edition) by E. Kreyszig.

