Solutions of 2nd order linear homogenenous ODEs (informal note)

In this note we consider the following linear homogeneous ODE:

$$y''(x) + ay'(x) + by(x) = 0,$$
 (1)

where ' denotes derivative $\frac{d}{dx}$ and a, b are real constants.

Definition: A general solution of (1) is function y(x) of the form

$$y(x) = C_1 y_1(x) + C_2 y_2(x),$$
 (2)

where y_1, y_2 are two linearly independent solutions of (1) and C_1, C_2 are (possibly complex) constants.

Remark:

- For given y_1, y_2 any solution of (1) can be obtained from (2) by a proper choice of C_1, C_2 .
- ▶ For the definition of linearly independence and more discussion of general solution, we refer to 10th edition of Kreyszig page 50.

Special solutions of the form $e^{\lambda x}$:

We set $y(x) = e^{\lambda x}$ and insert into (1):

(1)
$$\iff$$
 $(\lambda^2 + a\lambda + b)e^{\lambda x} = 0 \iff \lambda = \frac{-a \pm \sqrt{a^2 - 4b}}{2}.$ (3)

Let λ_1 and λ_2 denote the two solutions of (3). We have three different cases:

$$\begin{bmatrix} 1 & a^2 - 4b > 0 & \lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 \neq \lambda_2 \\ 2 & a^2 - 4b = 0 & \lambda_1 = \lambda_2 = -\frac{s}{2} \in \mathbb{R} \\ 3 & a^2 - 4b < 0 & \lambda_1 = -\frac{s}{2} + i\omega \ \text{and} \ \lambda_1 = -\frac{s}{2} - i\omega \ \text{and} \ \omega = \sqrt{4b - a^2} \\ \end{bmatrix}$$

and in each case the corresponding solutions of (1) are

$$y_1(x) = e^{\lambda_1 x}$$
 and $y_2(x) = e^{\lambda_2 x}$.

The general solution

Remark:

- ▶ If $\lambda_1 \neq \lambda_2$ then y_1 and y_2 are linearly independent (check!).
- When $\lambda_1 = \lambda_2 = -\frac{a}{2}$, then $\bar{y}_2(x) := xy_1(x)$ also solve (1) (check!) and is linearly independent of y_1 (check!).
- ▶ When $\lambda_1 = -\frac{3}{2} + i\omega$ and $\lambda_1 = -\frac{3}{2} i\omega$,

$$\tilde{y}_{\mathbf{1}}(x) := \frac{y_{\mathbf{1}} + y_{\mathbf{2}}}{2} = \mathrm{e}^{-\frac{3}{2}x} \cos \omega x \qquad \text{and} \qquad \tilde{y}_{\mathbf{2}}(x) := \frac{y_{\mathbf{1}} - y_{\mathbf{2}}}{2i} = \mathrm{e}^{-\frac{3}{2}x} \sin \omega x$$

also solve (1) by superposition (check!), and \tilde{y}_1 and \tilde{y}_2 are linearly independent (check!).

By this remark and the definition of general solution, we can now write down the general solution of (1). There are 3 different cases depending on the sign of a^2-4b :

General solution of (1):

$$\begin{vmatrix} 1 & a^2 - 4b > 0 & y(x) = C_1 y_1(x) + C_2 y_2(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} \\ 2 & a^2 - 4b = 0 & y(x) = C_1 y_1(x) + C_2 \bar{y}_2(x) = (C_1 + C_2 x) e^{\lambda_1 x} \\ 3 & a^2 - 4b < 0 & y(x) = C_1 \tilde{y}_1(x) + C_2 \tilde{y}_2(x) = e^{-\frac{a}{2} x} (C_1 \cos \omega x + C_2 \sin \omega x)$$

Concluding remarks:

- ▶ The quadratic equation found in (3) is called the characteristic equation: $\lambda^2 + a\lambda + b = 0$.
- ► A more detailed discussion can be found in chapter 2.2 in the textbook "Advanced Engeneering Mathematics" (10 th edition) by E. Kreyszig.