$F=S_{1}, S_{2}, S_{3}$ are shown in Fig. 269 in Sec. 11.2 , and $F=S_{20}$ is shown in Fig. 279 . Although $|f(x)-F(x)|$
is large at $\pm \pi$ (how large?), where f is discontinuous, F approximates f quite well on the whole interval, except
near $\pm \pi$, where "waves" remain owing to the "Gibbs phenomenon," which we shall discuss in the next section.
Can you think of functions f for which E^{*} decreases more quickly with increasing N ".

PROBLEMESETETI.4

1. CAS Problem. Do the numeric and graphic work in Example 1 in the text.

2-5 MINIMUM SQUARE ERROR

Find the trigonometric polynomial $F(x)$ of the form (2) for which the square error with respect to the given $f(x)$ on the interval $-\pi<x<\pi$ is minimum. Compute the minimum value for $N=1,2, \cdots, 5$ (or also for larger values if you have a CAS).

6. Why are the square errors in Prob. 5 substantially larger than in Prob. 3?
7. $f(x)=x^{3} \quad(-\pi<x<\pi)$
8. $f(x)=|\sin x| \quad(-\pi<x<\pi)$, full-wave rectifier
9. Monotonicity. Show that the minimum square error (6) is a monotone decreasing function of N. How can you use this in practice?
10. CAS EXPERIMENT. Size and Decrease of E^{*}. Compare the size of the minimum square error E^{*} for functions of your choice. Find experimentally the
factors on which the decrease of E^{*} with N depends. For each function considered find the smallest N such that $E^{*}<0.1$.

11-15 PARSEVALS'S IDENTITY

Using (8), prove that the series has the indicated sum. Compute the first few partial sums to see that the convergence is rapid.
11. $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}=1.233700550$

Use Example 1 in Sec. 11.1.
12. $1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90}=1.082323234$

Use Prob. 14 in Sec. 11.1.
13. $1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\cdots=\frac{\pi^{4}}{96}=1.014678032$

Use Prob. 17 in Sec. 11.1.
14. $\int_{-\pi}^{\pi} \cos ^{4} x d x=\frac{3 \pi}{4}$
15. $\int_{-\pi}^{\pi} \cos ^{6} x d x=\frac{5 \pi}{8}$

11.5 Sturm-Liouville Problems. Orthogonal Functions

The idea of the Fourier series was to represent general periodic functions in terms of cosines and sines. The latter formed a trigonometric system. This trigonometric system has the desirable property of orthogonality which allows us to compute the coefficient of the Fourier series by the Euler formulas.
The question then arises, can this approach be generalized? That is, can we replace the trigonometric system of Sec. 11.1 by other orthogonal systems (sets of other orthogonal functions)? The answer is "yes" and will lead to generalized Fourier series, including the Fourier-Legendre series and the Fourier-Bessel series in Sec. 11.6.
To prepare for this generalization, we first have to introduce the concept of a SturmLiouville Problem. (The motivation for this approach will become clear as you read on.) Consider a second-order ODE of the form

PROBELMESETE11.9

1. Review in complex. Show that $1 / i=-i, e^{-i x}=$ $\cos x-i \sin x, \quad e^{i x}+e^{-i x}=2 \cos x, \quad e^{i x}-e^{-i x}=$ $2 i \sin x, \quad e^{i k x}=\cos k x+i \sin k x$.

2-11 FOURIER TRANSFORMS BY

INTEGRATION

Find the Fourier transform of $f(x)$ (without using Table III in Sec. 11.10). Show details.
2. $f(x)= \begin{cases}e^{2 i x} & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}$
3. $f(x)= \begin{cases}1 & \text { if } a<x<b \\ 0 & \text { otherwise }\end{cases}$
4. $f(x)= \begin{cases}e^{k x} & \text { if } \quad x<0 \quad(k>0) \\ 0 & \text { if } \quad x>0\end{cases}$
5. $f(x)= \begin{cases}e^{x} & \text { if }-a<x<a \\ 0 & \text { otherwise }\end{cases}$
6. $f(x)=e^{-|x|} \quad(-\infty<x<\infty)$
7. $f(x)= \begin{cases}x & \text { if } 0<x<a \\ 0 & \text { otherwise }\end{cases}$
8. $f(x)= \begin{cases}x e^{-x} & \text { if }-1<x<0 \\ 0 & \text { otherwise }\end{cases}$
9. $f(x)= \begin{cases}|x| & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}$
10. $f(x)= \begin{cases}x & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}$
11. $f(x)=\left\{\begin{array}{rlr}-1 & \text { if } & -1<x<0 \\ 1 & \text { if } & 0<x<1 \\ 0 & \text { otherwise }\end{array}\right.$

12-17 USE OP TABLE III IN SEC. 11.10.

OTHER METHODS

12. Find $\mathscr{F}(f(x))$ for $f(x)=x e^{-x}$ if $x>0, f(x)=0$ if $x<0$, by (9) in the text and formula 5 in Table III (with $a=1$). Hint. Consider $x e^{-x}$ and e^{-x}.
13. Obtain $\mathscr{F}\left(e^{-x^{2} / 2}\right)$ from Table III.
14. In Table III obtain formula 7 from formula 8.
15. In Table III obtain formula 1 from formula 2.
16. TEAM PROJECT. Shifting (a) Show that if $f(x)$ has a Fourier transform, so \#oes $f(x-a)$, and

(b) Using (a), obtain formula 1 in Table III, Sec. 11.10, from formula 2.
(c) Shifting on the w-Axis. Show that if $\hat{f}(w)$ is the Fourier transform of $f(x)$, then $\hat{f}(w-a)$ is the Fourier transform of $e^{i a x} f(x)$.
(d) Using (c), obtain formula 7 in Table III from 1 and formula 8 from 2.
17. What could give you the idea to solve Prob. 11 by using the solution of Prob. 9 and formula (9) in the text? Would this work?

18-25 DISCRETE FOURER TRANSFORM

18. Verify the calculations in Example 4 of the text.
19. Find the transform of a general signal $f=\left[\begin{array}{llll}f_{1} & f_{2} & f_{3} & f_{4}\end{array}\right]^{\top}$ of four values.
20. Find the inverse matrix in Example 4 of the text and use it to recover the given signal.
21. Find the transform (the frequency spectrum) of a general signal of two values $\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right]^{\top}$.
22. Recreate the given signal in Prob. 21 from the frequency spectrum obtained.
23. Show that for a signal of eight sample values, $w=e^{-i / 4}=(1-i) / \sqrt{2}$. Check by squaring.
24. Write the Fourier matrix \mathbf{F} for a sample of eight values explicitly.
25. CAS Problem. Calculate the inverse of the 8×8 Fourier matrix. Transform a general sample of eight values and transform it back to the given data.
