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1 Preliminaries for Calculus 4N

In this note, we will present some mathematical results that will be used frequently, as well as
some definitions and concepts. Most of it should be known from previous courses, in particular
from Mathematics 1 and 3.

Executing the following cell loads a non-default css style for the notebook. Make sure that you
download the corresponding css file calculus4N.css from the course web page.

[1]: from IPython.core.display import HTML
def css_styling():

try:
fname = "calculus4N.css"
with open(fname, "r") as f:

styles = f.read()
return HTML(styles)

except FileNotFoundError:
print(f"WARNING: Could not find css file {fname}!")

# Comment out next line and execute this cell to restore the default notebook␣
↪→style

css_styling()

[1]: <IPython.core.display.HTML object>

1.1 Vector spaces and norms

Real vector spaces.

A real vector space is a set V together with operations + (addition) and · (multiplication with a
scalar) which satisfy the following conditions:

1. x + y ∈ V for all x, y ∈ V.
2. x + y = y + x for all x, y ∈ V.
3. x + (y + z) = (x + y) + z for all x, y, z ∈ V.
4. There exists some element 0 ∈ V such that x + 0 = x for all x ∈ V.
5. For all x ∈ V, there exists some element (−x) ∈ V such that x + (−x) = 0.
6. α · x ∈ V for all x ∈ V and α ∈ R.
7. α · (β · x) = (αβ) · x for all x ∈ V and α, β ∈ R.
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8. 1 · x = x for all x ∈ V.
9. α · (x + y) = α · x + α · y for all x, y ∈ V and α ∈ R.

10. (α + β) · x = α · x + β · x for all x ∈ V and α, β ∈ R.

Complex vector spaces are defined in exactly the same way, just replacing R with C in the defini-
tion above, so that the scalars are now allowed to be complex numbers.

Examples: The following vector spaces will be used thoughout the course:

• Rm is the set of all real vectors with m components.

• Rm×n is the set of all m× n real matrices.

• Pn is the set of all polynomials of degree n or less.

• Cm[a, b] is the set of all functions with continuous first m derivatives on the interval [a, b]. It
is common to use C[a, b] rather than C0[a, b] for all continuous functions.

Notice that Cn[a, b] ⊂ Cm[a, b] if n > m. Further, Pn ⊂ C∞[R].

Exercise. Verify that Pn and Cm[a, b] indeed are vector spaces. For that recall that the operations
“adding two functions” and “multiplying a function with a scalar” are defined as usual by defin-
ing the resulting functions pointwise:

( f + g)(x) := f (x) + g(x)(α f )(x) := α f (x)

Question from audience: Can we define Function with different variables $ f(x), g(y)$?

Addition is not immediately defined but you can define “new functions” f̃ (x, y) := f (x) and
g̃(x, y) := g(y) to make sense of it and then set ( f + g)(x, y) := f (x) + g(x)

1.1.1 Norms

Norm ‖·‖.

A norm is a function ‖·‖ : V → R such that the following hold:

1. ‖x‖≥ 0 for all x ∈ V.

2. ‖x‖ = 0 if and only if x = 0.

3. ‖α · x‖ = |α| ‖x‖ for all x ∈ V and α ∈ R.

4. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V. (triangle inequality)

The norm ‖·‖ of an element x in a vector space V is essentially a measure of the size of the element.
More importantly, the norm ‖x − y‖ of a difference of two vectors x, y ∈ V is a measure for the
distance between x and y, or, put differently, of how similar x and y are.

Norms for Rm and C[a, b]:

For any given vector space V, there are usually different meanigful definitions of norm that encode
different notions of similarity of elements of the vector space.

For x ∈ Rm (note that we will use bold symbols for vectors x ∈ Rm):

• The maximum-norm ‖x‖∞ = maxm
i=1 |xi|.
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• The Euclidean norm ‖x‖2 =
√

∑m
i=1 x2

i .

• More, generally, we can define the lP norm of a vector x by ‖x‖p =
(
∑m

i=1 xp
i

)1/p
, 1 6 p 6 ∞

Norms for Rm and C[a, b]:

For any given vector space V, there are usually different meanigful definitions of norm that encode
different notions of similarity of elements of the vector space.

For x ∈ Rm (note that we will use bold symbols for vectors x ∈ Rm):

• The maximum-norm ‖x‖∞ = maxm
i=1 |xi|.

• The Euclidean norm ‖x‖2 =
√

∑m
i=1 x2

i .

• More, generally, we can define the lP norm of a vector x by ‖x‖p = (∑m
i=1 |xi|p)1/p.

For f ∈ C[a, b], similar norms can be defined:

• The maximum-norm ‖ f ‖∞ = maxx∈[a,b] | f (x)|.

• The L2-norm ‖ f ‖2 =
√∫ b

a f (x)2 dx.

• The Lp-norm ‖ f ‖p =
(∫ b

a | f (x)|p dx
)1/p

.

Thus for two functions f , g ∈ C[a, b], the expression ‖ f − g‖∞ measures the maximal pointwise
difference of f (x) and g(x), while the term ‖ f − g‖2 measures the average (quadratic) difference
of| f (x) ad g(x).

We will always use the absolute value as the norm of a real number, thus ‖x‖ = |x| whenever
x ∈ R.

Example 1: Let x = [1,−6, 3,−1, 5]T ∈ R5. Then

‖x‖2 =
√

1 + 36 + 9 + 1 + 25 ≈ 8.4853,
‖x‖∞ = max{1, 6, 3, 1, 5} = 6.

Norms of vectors in Rm are implemented in Python.

[2]: %matplotlib inline

import numpy as np
from numpy.linalg import norm
import matplotlib.pyplot as plt
newparams = {'figure.figsize': (8.0, 4.0), 'axes.grid': True,

'lines.markersize': 8, 'lines.linewidth': 2,
'font.size': 14}

plt.rcParams.update(newparams)

[3]: # The norm of a vector in R^n
x = np.array([1, -6, 3, -1, 5])
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nx_2 = norm(x) # The 2-norm is the default
nx_inf = norm(x,ord=np.inf) # The max-norm
print('x = \n', x)
print('The 2-norm of x: {:8.4f}'.format(nx_2))
print('The max-norm of x: {:8.4f}'.format(nx_inf))

x =
[ 1 -6 3 -1 5]

The 2-norm of x: 8.4853
The max-norm of x: 6.0000

Example 2: Let f (x) = sin(x) on [0, 2π], so f ∈ C∞[0, 2π]. In this case

‖ f ‖2 =

√∫ 2π

0
sin2(x)dx =

√
π ≈ 1.7725

‖ f ‖∞ = max
x∈[0,2π]

| sin(x)| = 1.

1.1.2 Scalar products

A scalar product (also called inner product) 〈·, ·〉 on a real vector space V is a symmetric, positive
definite bilinear form on V; that is, it is a mapping 〈·, ·〉 : V ×V → R which is a bilinear

1. 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ V and α, β ∈ R,
2. 〈z, αx + βy〉 = α〈z, x〉+ β〈z, y〉 for all x, y, z ∈ V and α, β ∈ R,

symmetric

3. 〈x, y〉 = 〈y, x〉

and positive definite

4. 〈x, x〉 > 0 and 〈x, x〉 = 0⇔ x = 0

An inner product on V automatically induces a Norm on V via

V 3 x 7→ ‖x‖ :=
√
〈x, x〉

Exercise: Verify this.

Example 1: Let x, y ∈ Rm and define

〈x, y〉 := x · y :=
m

∑
i=1

xiyi

Example 2: Let f , g ∈ C[a, b] and set

〈 f , g〉 :=
∫ b

a
f (x)g(x)dx

〈α1 f1 + α2 f,g〉 = α1

∫ b

a
f1(x)g(x)dx + α2

∫ b

a
f2(x)g(x)dx
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Then this define a scalar product. Clearly, this expression defines a symmetric bilinear form on
C[a, b] (verify this), but what about being positive definite? Of course 〈 f , f 〉 =

∫ b
a ( f (x))2 dx > 0

but why does 〈 f , f 〉 = 0⇔ f = 0, that is f (x) = 0 ∀x ∈ [a, b] hold?

Proof by contradiction: Imagine f attains at x0 a value f (x0) = c > 0. Since f is continuous, there
must be an ε > 0 such that f (x) > c/2 for x ∈ [x0 − ε, x0 + ε]. Consequently,

〈 f , f 〉 =
∫ b

a
( f (x))2 dx >

∫ x0+ε

x0−ε
( f (x))2dx >

∫ x0+ε

x0−ε
(c/2)2 dx > 0.

Orthogonal vectors. Assume that V is a vector space with a scalar product 〈·, ·〉. Then x, y ∈ V
are said to be orthogonal if 〈x, y〉 = 0.

Example 1 V = R3 with standard inner product, then x = [1, 2, 3]T and y = [3, 0,−1]T are orthog-
onal.

Example 2: Let V = C[−1, 1] with the inner produc 〈 f , g〉 :=
∫ 1
−1 f (x)g(x)dx. Set f (x) = x and

g(x) = x2. Then 〈 f , g〉 = 0

Exercise Verify this.

[4]: f = lambda x : x
g = lambda x : x**2
f_g = lambda x : f(x)*g(x)
x = np.linspace(-1,1,50)
plt.plot(x, f(x), marker='x', label="$f$")
plt.plot(x, g(x), marker='+', label="$g$")
plt.plot(x, f_g(x), marker='*', label="$f\cdot g$")
plt.legend()

[4]: <matplotlib.legend.Legend at 0x10cc00520>

5



Note that the specific interval [a, b] in the definition of 〈 f , g〉 :=
∫ b

a f (x)g(x)dx is important. For
instance the two functions f and g defined above are orthogonal on [−1, 1] and any other sym-
metric interval [−a, a] around 0, but there are not orthogonal on the interval [0, 1].

[5]: x = np.linspace(0,1,50)
plt.plot(x, f(x), marker='x', label="$f$")
plt.plot(x, g(x), marker='+', label="$g$")
plt.plot(x, f_g(x), marker='*', label="$f\cdot g$")
plt.legend()

[5]: <matplotlib.legend.Legend at 0x112dceb80>

1.1.3 Cauchy-Schwarz inequality

Reminder from Calculus 3. Assume we have a vector space V endowed with an inner product
〈·, ·〉. Then for f , g ∈ V it holds that

|〈 f , g〉| 6 ‖ f ‖‖g‖.

This is the Cauchy-Schwarz inequality and holds for any abstract inner product. More precisely,
we have that

|〈 f , g〉| < ‖ f ‖‖g‖

unless f = λg for some λ ∈ R.

1.1.4 Gram-Schmidt Orthogonalization

Let {a1, . . . , an} ⊂ Rm n linear independent vectors in Rm. The Gram-Schmidt orthogonaliza-
tion process allows to orthogonalizes that set, that means, we can construct a set {q1, . . . , qn} of
orthogonal (orthonormal) vectors which have the same span as the original set.
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y1 := a1, q1 :=
y1
‖y1‖

y2 := a2 − 〈q1, a2〉q1, q2 :=
y2
‖y2‖

. . .

yk := ak −
k−1

∑
i=1
〈qi, ak〉qi, qk :=

yk
‖yk‖

. . .

yn := an −
n−1

∑
i=1
〈qi, an〉qi, qn :=

yn
‖yn‖

Observe that Gram-Schmidt orthogonalization makes perfect sense for any independent finite set
of vectors { f1, . . . fn} ⊂ V for some vector space V endowed with a scalar product 〈·, ·〉!

Exercise 1. Show that the functions {1, x, x2} ⊂ P2 are linearly independent.

Exercise 2. Use Gram-Schmidt to orthogonalize/orthonormalize the functions {1, x, x2} on the
interval [0, 1].

1.1.5 Orthogonal projection

There are several equivalent ways to define an orthogonal projection. Assume we have a vector
space V endowed with an inner product 〈·, 〉 and a finite dimensional subspace Vn ⊂ V. Thanks
to Gram-Schmidt, we also know that we can construc an orthornomal basis {e1, . . . , en} of Vn.

We define the orthogonal projection

ΠVn := Πn : V → Vn

by requiring that for v ∈ V, Πnv must satisfy

〈Πnv, w〉 = 〈v, w〉 ∀w ∈ Vn.

Or in other words, the difference vector, (also called projection error) Πnv − v must satisfy a
orthorgonality property with respect to the subspace Vn:

〈Πnv− v, w〉 = 0 ∀w ∈ Vn.

The projection is well defined. Assuming that Πnv exists, we can express in terms of the orthonor-
mal basis {e1, . . . , en}:

Πnv = ∑ ṽiei

Any vector w ∈ Vn can be written as

w =
n

∑
j=1

wjej
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Thus

〈Πnv, w〉 = ∑
j=1

wj〈Πnv, ej〉

= ∑
j=1

wj

n

∑
i=1

ṽi〈ei, ej〉

On the other hand

〈v, w〉 =
n

∑
j=1

wj〈v, ej〉

So in order to satisfy the requirement above, we must have that for $ j = 1, . . . , n$

n

∑
i=1

ṽi〈ei, ej〉 =
n

∑
i=1

ṽi〈ej, ei〉 = 〈v, ej〉︸ ︷︷ ︸
:=bj

Since 〈ei, ej〉 = δij is the Kronecker delta symbol which is = 0 if i 6= j and = 1 if i = j we see that
the last equation can be written as a simple matrix system to

Id[ṽ1, . . . , ṽn]
T = [b1, . . . , bn]

T

Best approximation theorem

For any v ∈ V, we have that
‖Πnv− v‖ = min

w∈Vn
‖w− v‖

Proof

Take any w ∈ Vn. Then

‖Πnv− v‖2 = 〈Πnv− v, Πnv− v〉
= 〈Πnv− v, Πnv− w + w− v〉
= 〈Πnv− v, Πnv− w〉︸ ︷︷ ︸

=0

+〈Πnv− v, w− v〉

6 ‖Πnv− v‖‖w− v‖

where we use the orthogonality property of the projection error and the Cauchy Schwarz inequal-
ity.

2 Taylor-expansions

Given a function f ∈ C∞[a, b]. Choose a point x0 and an increment h = x− x0 such that x0, x0 + h ∈
[a, b]. The Taylor series expansion of f around x0 is then given by

∞

∑
k=0

f (k)(x0)

k!
(x− x0)

k =
∞

∑
k=0

f (k)(x0)

k!
hk
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The function f is called analytic in x0 if the series converges for sufficiently small values of |h| to
f , that is, if

f (x) =
∞

∑
k=0

f (k)(x0)

k!
(x− x0)

k

In numerics, we will usually work with the trunctated series, also called the Taylor polynomial (+
remainder term), which exists for all f ∈ Ck+1[a, b]:

f (x) =
m

∑
k=0

f (k)(x0)

k!
(x− x0)

k + Rm+1(x0).

Here the remainder term is given by

Rm+1(x0) =
f (m+1)(ξ)

(m + 1)!
(x− x0)

m+1,

where ξ is some unknown point between x0 and x.

Often we write this as

f (x0 + h) =
m

∑
k=0

f (k)(x0)

k!
hk +O(hm+1).

Here we used the the Big O-notation. Let f and g be some real valued function and a ∈ R. We
say that

f (x) = O(g(x)) as x → a,

if there exist δ > 0 and M > 0 such that

| f (x)| ≤ M|g(x)| when 0 < |x− a| < δ.

That is, locally around the point a, the function f can be bounded, up to a constant, by the function
g.

3 Some other useful results

Result 1: Let f ∈ C[a, b] and let u be some number between f (a) and f (b), then there exist at least
one ξ ∈ (a, b) such that f (ξ) = u.

Result :2 (Rolle’s theorem) Let f ∈ C1[a, b] and f (a) = f (b) = 0. Then there exists at least one
ξ ∈ (a, b) such that f ′(ξ) = 0.

Result 3: Let f ∈ C1[a, b]. Then there exists at least one ξ ∈ (a, b) such that

f ′(ξ) =
f (b)− f (a)

b− a
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