Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Polynomial interpolation: Newton interpolation

Anne Kvzerng (modified by André Massing)

Jan 18, 2021

The Python codes for this note are given in polynomialinterpolation.py.

1 Introduction

We continue with an alternative approach to find the interpolation polynomial.

1.1 Newton interpolation

This is an alternative approach to find the interpolation polynomial. Let zq,z1,...,z, be n + 1 distinct
real numbers. Instead of using the Lagrange polynomials to write the interpolation polynomial in Lagrange
form, we will now employ the Newton polynomials w;, i = 0,...,n. The Newton polynomials are defined
by as follows:

wo(z) =1,

wi(z) = (z — 29),

we(z) = (x — xo)(x — 21),

wn(2) = (2 — zo)(x — 21) -+ (T — Tp—1),

or in more compact notation

The so-called Newton form of a polynomial of degree n is an expansion of the form
n
pla) = ciwi(z)
i=0

or more explicitly

p(x)=ch(x —zp)(x—x1) - (T —Tp_1) + cn1(x —x0)(x — 1) - (T — zp—2) + -+ c1(x — x0) + co.

In the light of this form of writing a polynomial, the polynomial interpolation problem leads to the
following observations. Let us start with a single node zq, then f(xg) = p(z¢) = c¢o. Going one step further
and consider two nodes xg, x1. Then we see that f(zo) = p(zo) = ¢o and f(z1) = p(x1) = co + c1(x1 — x0).
The latter implies that the coefficient
. fla1) = fl@o)
r1 — 2o

Given three nodes xg, x1, x2 yields the coefficients ¢y, ¢; as defined above, and from

f(z2) = p(x2) = co + c1(v2 — @0) + ca(w2 — o) (22 — 1)

we deduce the coeflicient

flwa) = f(ao) — L= (3, —)

(z2 — z0)(z2 — 71)

Cy =
Playing with this quotient gives the much more structured expression

flx2)—f(z1) flz1)—f(xo0)

T2—T1 T1—%o

(z2 — o)

Cy =

This procedure can be continued and yields a so-called triangular systems that permits to define the
remaining coefficients cs, . .., c¢,. One sees quickly that the coefficient ¢; only depends on the interpolation
points (zo,Yo0), - - -, (Tk, yx), where y; := f(x;),i=0,...,n.

We introduce the folllwing so-called finite difference notation for a function f. The Oth order finite
difference is defined to be f[zg] := f(xg). The 1st order finite difference is

flwo,a1] = w

The second order finite difference is defined by
flry, z2] — flwo, 21]

flzo, x1, 2] := .
T2 — To

In general, the nth order finite difference of the function f, also called the nth Newton divided
difference, is defined recursively by

f[m()’_._’xn] = f[xla-..7$n1]:,_7f£73;07...,$n71].

Newton’s method to solve the polynomial interpolation problem can be summarized as follows. Given
n + 1 interpolation points (2o, yo), .- -, (Tn,Yn), ¥i := f(x;). If the order n interpolation polynomial is
expressed in Newton’s form

pn(x) =cp(z —xo)(x —21) - (@ —2p_1) + cn1(x —zo)(® —21) - (& — Tp2) + - - + c1(x — 20) + co,
then the coefficients

Ck:f[x()a--~7mk]

for k =0,...,n. In fact, a recursion is in place

P (x) = o1 () + flzo, -, xn](® —xo)(x — 1) -+ (T — Tp1)

It is common to write the finite differences in a table, which for n = 3 will look like:

zo | flwo]
flwo, 1]
w1 | flzd] flwo, 21, 72]
flz1, o] flzo, 21, 22, 23]
Ty | flro] flz1, w2, 23]
f[3?27 3?3]
w3 | flzs]

Example 1 again: Given the points in Example 1. The corresponding table of divided differences

becomes:
0 1
—3/4
2/3|1/2 —3/4
-3/2
1 0
and the interpolation polynomial becomes
B 3 3 2, 1 3,
pe(x) =1 Z(ac 0) Z(m 0)(z g) =1 2%

1.2 Implementation
The method above is implemented as two functions:

e divdiff(xdata, ydata): Create the table of divided differences

e newtonInterpolation(F, xdata, x): Evaluate the interpolation polynomial.

Here, xdata and ydata are arrays with the interpolation points, and x is an array of values in which the

polynomial is evaluated.

def divdiff (xdata,ydata):

Create the table of divided differences based

on the data in the arrays x_data and y_data.

n = len(xdata)

F = np.zeros((n,n))

F[:,0] = ydata # Array for the divided differences

for j in range(n):

for i in range(n-j-1):
Fli,j+1] = (F[i+1,j]1-F[i,jl)/(xdata[i+j+1]-xdatal[il)

return F # Return all of F for inspection.
Only the first row is necessary for the
polynomial.

def newton_interpolation(F, xdata, x):
The Newton interpolation polynomial evaluated in x.
n, m = np.shape(F)
xpoly = np.ones(len(x)) # (x-x[0]) (x-x[1])...
newton_poly = F[0,0]*np.ones(len(x)) # The Newton polynomial
for j in range(n-1):
xpoly = xpoly*(x-xdatalj])
newton_poly = newton_poly + F[0,j+1]*xpoly
return newton_poly

Run the code on the example above:

Example: Use of divided differences and the Newton interpolation
formula.

xdata = [0, 2/3, 1]

ydata = [1, 1/2, 0]

F = divdiff (xdata, ydata) # The table of divided differences
print (’The table of divided differences:\n’,F)

x = np.linspace(0, 1, 101) # The x-values in which the polynomial is evaluated
p = newton_interpolation(F, xdata, x)

plt.plot(x, p) # Plot the polynomial

plt.plot(xdata, ydata, ’0’) # Plot the interpolation points

plt.title(’The interpolation polynomial p(x)’)
plt.grid(True)
plt.xlabel(’x’);

	Introduction
	Newton interpolation
	Implementation

