
Lecture notes for TMA4125/4130/4135 Mathematics 4N/D

Polynomial interpolation: Newton interpolation

Anne Kværnø (modified by André Massing)

Jan 18, 2021

The Python codes for this note are given in polynomialinterpolation.py.

1 Introduction
We continue with an alternative approach to find the interpolation polynomial.

1.1 Newton interpolation
This is an alternative approach to find the interpolation polynomial. Let x0, x1, . . . , xn be n + 1 distinct
real numbers. Instead of using the Lagrange polynomials to write the interpolation polynomial in Lagrange
form, we will now employ the Newton polynomials ωi, i = 0, . . . , n. The Newton polynomials are defined
by as follows:

ω0(x) = 1,

ω1(x) = (x − x0),
ω2(x) = (x − x0)(x − x1),

. . .

ωn(x) = (x − x0)(x − x1) · · · (x − xn−1),

or in more compact notation

ωi(x) =
i−1∏
k=0

(x − xk). (1)

The so-called Newton form of a polynomial of degree n is an expansion of the form

p(x) =
n∑

i=0
ciωi(x)

or more explicitly

p(x) = cn(x − x0)(x − x1) · · · (x − xn−1) + cn−1(x − x0)(x − x1) · · · (x − xn−2) + · · · + c1(x − x0) + c0.

In the light of this form of writing a polynomial, the polynomial interpolation problem leads to the
following observations. Let us start with a single node x0, then f(x0) = p(x0) = c0. Going one step further
and consider two nodes x0, x1. Then we see that f(x0) = p(x0) = c0 and f(x1) = p(x1) = c0 + c1(x1 − x0).
The latter implies that the coefficient

c1 = f(x1) − f(x0)
x1 − x0

.

Given three nodes x0, x1, x2 yields the coefficients c0, c1 as defined above, and from

f(x2) = p(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)



we deduce the coefficient

c2 =
f(x2) − f(x0) − f(x1)−f(x0)

x1−x0
(x2 − x0)

(x2 − x0)(x2 − x1) .

Playing with this quotient gives the much more structured expression

c2 =
f(x2)−f(x1)

x2−x1
− f(x1)−f(x0)

x1−x0

(x2 − x0) .

This procedure can be continued and yields a so-called triangular systems that permits to define the
remaining coefficients c3, . . . , cn. One sees quickly that the coefficient ck only depends on the interpolation
points (x0, y0), . . . , (xk, yk), where yi := f(xi), i = 0, . . . , n.

We introduce the folllwing so-called finite difference notation for a function f . The 0th order finite
difference is defined to be f [x0] := f(x0). The 1st order finite difference is

f [x0, x1] := f(x1) − f(x0)
x1 − x0

.

The second order finite difference is defined by

f [x0, x1, x2] := f [x1, x2] − f [x0, x1]
x2 − x0

.

In general, the nth order finite difference of the function f , also called the nth Newton divided
difference, is defined recursively by

f [x0, . . . , xn] := f [x1, . . . , xn] − f [x0, . . . , xn−1]
xn − x0

.

Newton’s method to solve the polynomial interpolation problem can be summarized as follows. Given
n + 1 interpolation points (x0, y0), . . . , (xn, yn), yi := f(xi). If the order n interpolation polynomial is
expressed in Newton’s form

pn(x) = cn(x − x0)(x − x1) · · · (x − xn−1) + cn−1(x − x0)(x − x1) · · · (x − xn−2) + · · · + c1(x − x0) + c0,

then the coefficients

ck = f [x0, . . . , xk]

for k = 0, . . . , n. In fact, a recursion is in place

pn(x) = pn−1(x) + f [x0, . . . , xn](x − x0)(x − x1) · · · (x − xn−1)

It is common to write the finite differences in a table, which for n = 3 will look like:

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3]

x3 f [x3]

2



Example 1 again: Given the points in Example 1. The corresponding table of divided differences
becomes:

0 1
−3/4

2/3 1/2 −3/4
−3/2

1 0

and the interpolation polynomial becomes

p2(x) = 1 − 3
4(x − 0) − 3

4(x − 0)(x − 2
3) = 1 − 1

4x − 3
4x2.

1.2 Implementation
The method above is implemented as two functions:

• divdiff(xdata, ydata): Create the table of divided differences

• newtonInterpolation(F, xdata, x): Evaluate the interpolation polynomial.

Here, xdata and ydata are arrays with the interpolation points, and x is an array of values in which the
polynomial is evaluated.

def divdiff(xdata,ydata):
# Create the table of divided differences based
# on the data in the arrays x_data and y_data.
n = len(xdata)
F = np.zeros((n,n))
F[:,0] = ydata # Array for the divided differences
for j in range(n):

for i in range(n-j-1):
F[i,j+1] = (F[i+1,j]-F[i,j])/(xdata[i+j+1]-xdata[i])

return F # Return all of F for inspection.
# Only the first row is necessary for the
# polynomial.

def newton_interpolation(F, xdata, x):
# The Newton interpolation polynomial evaluated in x.
n, m = np.shape(F)
xpoly = np.ones(len(x)) # (x-x[0])(x-x[1])...
newton_poly = F[0,0]*np.ones(len(x)) # The Newton polynomial
for j in range(n-1):

xpoly = xpoly*(x-xdata[j])
newton_poly = newton_poly + F[0,j+1]*xpoly

return newton_poly

Run the code on the example above:

# Example: Use of divided differences and the Newton interpolation
# formula.
xdata = [0, 2/3, 1]
ydata = [1, 1/2, 0]
F = divdiff(xdata, ydata) # The table of divided differences
print(’The table of divided differences:\n’,F)

x = np.linspace(0, 1, 101) # The x-values in which the polynomial is evaluated
p = newton_interpolation(F, xdata, x)
plt.plot(x, p) # Plot the polynomial
plt.plot(xdata, ydata, ’o’) # Plot the interpolation points
plt.title(’The interpolation polynomial p(x)’)
plt.grid(True)
plt.xlabel(’x’);

3


	Introduction
	Newton interpolation
	Implementation


