# Polynomial interpolation: Newton interpolation 

Anne Kværnø (modified by André Massing)

Jan 18, 2021

The Python codes for this note are given in polynomialinterpolation.py.

## 1 Introduction

We continue with an alternative approach to find the interpolation polynomial.

### 1.1 Newton interpolation

This is an alternative approach to find the interpolation polynomial. Let $x_{0}, x_{1}, \ldots, x_{n}$ be $n+1$ distinct real numbers. Instead of using the Lagrange polynomials to write the interpolation polynomial in Lagrange form, we will now employ the Newton polynomials $\omega_{i}, i=0, \ldots, n$. The Newton polynomials are defined by as follows:

$$
\begin{aligned}
\omega_{0}(x) & =1 \\
\omega_{1}(x) & =\left(x-x_{0}\right) \\
\omega_{2}(x) & =\left(x-x_{0}\right)\left(x-x_{1}\right), \\
\cdots & \\
\omega_{n}(x) & =\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right),
\end{aligned}
$$

or in more compact notation

$$
\begin{equation*}
\omega_{i}(x)=\prod_{k=0}^{i-1}\left(x-x_{k}\right) \tag{1}
\end{equation*}
$$

The so-called Newton form of a polynomial of degree $n$ is an expansion of the form

$$
p(x)=\sum_{i=0}^{n} c_{i} \omega_{i}(x)
$$

or more explicitly

$$
p(x)=c_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)+c_{n-1}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-2}\right)+\cdots+c_{1}\left(x-x_{0}\right)+c_{0} .
$$

In the light of this form of writing a polynomial, the polynomial interpolation problem leads to the following observations. Let us start with a single node $x_{0}$, then $f\left(x_{0}\right)=p\left(x_{0}\right)=c_{0}$. Going one step further and consider two nodes $x_{0}, x_{1}$. Then we see that $f\left(x_{0}\right)=p\left(x_{0}\right)=c_{0}$ and $f\left(x_{1}\right)=p\left(x_{1}\right)=c_{0}+c_{1}\left(x_{1}-x_{0}\right)$. The latter implies that the coefficient

$$
c_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Given three nodes $x_{0}, x_{1}, x_{2}$ yields the coefficients $c_{0}, c_{1}$ as defined above, and from

$$
f\left(x_{2}\right)=p\left(x_{2}\right)=c_{0}+c_{1}\left(x_{2}-x_{0}\right)+c_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)
$$

we deduce the coefficient

$$
c_{2}=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
$$

Playing with this quotient gives the much more structured expression

$$
c_{2}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{\left(x_{2}-x_{0}\right)} .
$$

This procedure can be continued and yields a so-called triangular systems that permits to define the remaining coefficients $c_{3}, \ldots, c_{n}$. One sees quickly that the coefficient $c_{k}$ only depends on the interpolation points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)$, where $y_{i}:=f\left(x_{i}\right), i=0, \ldots, n$.
We introduce the folllwing so-called finite difference notation for a function $f$. The 0 th order finite difference is defined to be $f\left[x_{0}\right]:=f\left(x_{0}\right)$. The 1st order finite difference is

$$
f\left[x_{0}, x_{1}\right]:=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} .
$$

The second order finite difference is defined by

$$
f\left[x_{0}, x_{1}, x_{2}\right]:=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}
$$

In general, the nth order finite difference of the function $f$, also called the nth Newton divided difference, is defined recursively by

$$
f\left[x_{0}, \ldots, x_{n}\right]:=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}} .
$$

Newton's method to solve the polynomial interpolation problem can be summarized as follows. Given $n+1$ interpolation points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right), y_{i}:=f\left(x_{i}\right)$. If the order $n$ interpolation polynomial is expressed in Newton's form
$p_{n}(x)=c_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)+c_{n-1}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-2}\right)+\cdots+c_{1}\left(x-x_{0}\right)+c_{0}$,
then the coefficients

$$
c_{k}=f\left[x_{0}, \ldots, x_{k}\right]
$$

for $k=0, \ldots, n$. In fact, a recursion is in place

$$
p_{n}(x)=p_{n-1}(x)+f\left[x_{0}, \ldots, x_{n}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
$$

It is common to write the finite differences in a table, which for $n=3$ will look like:

$$
\begin{array}{l|llll}
x_{0} & f\left[x_{0}\right] & & & \\
& & f\left[x_{0}, x_{1}\right] & & \\
x_{1} & f\left[x_{1}\right] & & f\left[x_{0}, x_{1}, x_{2}\right] & \\
& & f\left[x_{1}, x_{2}\right] & & f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
x_{2} & f\left[x_{2}\right] & & f\left[x_{1}, x_{2}, x_{3}\right] & \\
& & f\left[x_{2}, x_{3}\right] & & \\
x_{3} & f\left[x_{3}\right] & & &
\end{array}
$$

Example 1 again: Given the points in Example 1. The corresponding table of divided differences becomes:

| 0 | 1 |  |  |
| :---: | :---: | :---: | :---: |
| $2 / 3$ |  | $-3 / 4$ |  |
| $1 / 2$ |  | $-3 / 4$ |  |
| 1 |  | $-3 / 2$ |  |

and the interpolation polynomial becomes

$$
p_{2}(x)=1-\frac{3}{4}(x-0)-\frac{3}{4}(x-0)\left(x-\frac{2}{3}\right)=1-\frac{1}{4} x-\frac{3}{4} x^{2} .
$$

### 1.2 Implementation

The method above is implemented as two functions:

- divdiff(xdata, ydata): Create the table of divided differences
- newtonInterpolation(F, xdata, x): Evaluate the interpolation polynomial.

Here, xdata and ydata are arrays with the interpolation points, and $x$ is an array of values in which the polynomial is evaluated.

```
def divdiff(xdata,ydata):
    # Create the table of divided differences based
    # on the data in the arrays x_data and y_data.
    n = len(xdata)
    F = np.zeros((n,n))
    F[:,0] = ydata # Array for the divided differences
    for j in range(n):
        for i in range(n-j-1):
            F[i,j+1] = (F[i+1,j]-F[i,j])/(xdata[i+j+1]-xdata[i])
    return F # Return all of F for inspection.
                            # Only the first row is necessary for the
                            # polynomial.
def newton_interpolation(F, xdata, x):
    # The Newton interpolation polynomial evaluated in x.
    n, m = np.shape(F)
    xpoly = np.ones(len(x)) # (x-x[0])(x-x[1])...
    newton_poly = F[0,0]*np.ones(len(x)) # The Newton polynomial
    for j in range(n-1):
        xpoly = xpoly*(x-xdata[j])
        newton_poly = newton_poly + F[0,j+1]*xpoly
    return newton_poly
```

Run the code on the example above:

```
# Example: Use of divided differences and the Newton interpolation
# formula.
xdata = [0, 2/3, 1]
ydata = [1, 1/2, 0]
F = divdiff(xdata, ydata) # The table of divided differences
print('The table of divided differences:\n',F)
x = np.linspace(0, 1, 101) # The x-values in which the polynomial is evaluated
p = newton_interpolation(F, xdata, x)
plt.plot(x, p) # Plot the polynomial
plt.plot(xdata, ydata, 'o') # Plot the interpolation points
plt.title('The interpolation polynomial p(x)')
plt.grid(True)
plt.xlabel('x');
```

