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Abstract

Exponential families and equivariance are central concepts in theoretical statis-
tics. This is demonstrated by solving the problems formulated in this note. Some
knowledge of probability theory, statistics, and multivariate calculus is assumed.
You must, as always, formulate necessary assumptions as part of the proof of a
claim. Casella and Berger (2002) give many more illustrations and explanations of
the theory behind the methods of statistical inference. 1
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1 Sufficient Estimators in Exponential Families

1.1 Exponential Families

Assume that
f(x | θ) = exp(θt− γ)h(x) (1)

is the density of a random quantity X given by a real statistic t = t(x) and a real model
parameter θ ∈ ΩΘ ⊂ R. Determine γ = γ(θ) and find the largest model space ΩΘ which is
consistent with equation (1). Can you say something about convexity or other properties
of ΩΘ? Show that T = t(X) is the UMVUE and MLE for τ = E(T ).

1.2 Important Moments

Use the moment generating function of T in equation (1) to prove that τ = γ′, and
that τ and θ are in a one-one correspondence. Can this be used to prove existence and
uniqueness of the MLE θ̂? What does the Cramer-Rao inequality imply for τ̂ and θ̂?
Show that the density of t is on the form given by the special case t = x. Use this to give
a proof of completeness of t.

1.3 The Classics

Consider X to be a random sample from N(µ, σ2) with σ known. Is this a special case of
equation (1)? If so give the corresponding results from the analysis in section 1.1. Do the
same for the cases where µ is known. Consider the same analysis for all six cases given
by Gamma(α, β), B(n, p), and U((1− k)β, (1 + k)β) where 0 < k ≤ 1.

1.4 Location and Scale

Prove that Y > 0 is from a scale family if and only if X = lnY is from a location family.
Prove that Y > 0 is from a exponential family if and only if X is. Determine for each
of the cases in section 1.3 if X or T are from a location family or a scale family or not.
What about invariance for other transformations for the examples in section 1.3? Can
you give conditions on equation (1) that ensures that X or T is from a location family
or a scale family?

1.5 Exponential Families in Space

Redo the exercise in Section 1.1 for the case where t, θ ∈ Rk. Analyze in particular
the case where X is random sample from N(µ, σ2) with both parameters unknown. Do
the same analysis for the Gamma(α, β) case. What happens if there is a restriction
M(θ) = m on the model parameter θ? Consider in particular the example given by
M(µ, σ) = µ− σ = 0 for the N(µ, σ2) case.
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2 Optimal Equivariant Estimators

2.1 The Basu Theorem

Prove that
E(E(ϕ(S) |T )− E(ϕ(S))) = 0 (2)

and use this to prove the Basu theorem.

2.2 Scale Equivariance

Let the data x be a positive number. Prove that t = t(x) = xt1 is a scale equivariant
estimator, and that all scale equivariant estimators are on this form for x, t1 > 0. What
about location equivariant estimators for real data?

2.3 Invariant Loss

Let a loss for an estimator t be defined by ℓ = ℓ(t, β) = ϕ(tβ−1) with ϕ(y) = [ln(y)]2.
Show that ℓ is invariant in the sense that ℓ(gt, gβ) = ℓ(t, β). Can you determine all
possible scale invariant loss functions? What about location invariant loss functions for
real data? Convex and invariant loss?

2.4 Group Model

Show that the statistical model for the data X = βU is scale invariant where U > 0 has
a known distribution. Explain that the identity ℓ(t(βU), β) = ℓ(t(x), xU−1) gives that
the risk ρ = E(ℓ(T, β)) is minimized by the statistic t = exp(E(ln(xU−1))). Calculate t
for the case where x is the minimal sufficient statistic from a random sample from the
Gamma(α, β) with known shape α. Do this also for the case N(µ, σ2) where µ is known.
What if the loss is defined using ϕ(y) = y2 − 1− ln(y2) as Stein did?

2.5 Conditionality Principle?

Show that w = x is scale equivariant. Is the statistic a = (x1, x2)w
−1 ancillary for data

X = (X1, X2) = (βU1, βU2)? Is the optimal solution for the conditional model for w
given A = a also unconditionally optimal? Use the Basu theorem to prove consistency
between the solutions by this method compared to the method of sufficient statistics used
in section 2.4. Draw the level sets of the statistic a and the sufficient statistic and explain
the kind of data reduction obtained by the two methods.
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