Contacts during the exam:
Toke Meier Carlsen (46249940)

Exam in TMA4110 Calculus 3

English
Thursday December 13, 2012
Time: 09:00-13:00
Grades ready by January 13, 2013
Permitted aids (Code C): Specified, simple calculator (HP 30S or Citizen SR-270X) Rottmann: Matematisk formelsamling

All answers must be justified, and your calculations should be detailed enough to clearly indicate your line of argument. Each of the 8 problems has the same weight.

Problem 1 Show that $z_{1}=1+\sqrt{3} i$ is a zero of the polynomial $P(z)=z^{5}-2 z^{4}+4 z^{3}-$ $8 z^{2}+16 z-32$ and find the 4 other zeros of P.

Problem 2 Find the general solution to the differential equation $y^{\prime \prime}+2 y^{\prime}+5 y=2 \cos t+$ $4 \sin t$.

Problem 3 Find the general solution to the system

$$
\begin{aligned}
3 x_{1}-6 x_{2}+6 x_{3} & =-15 \\
x_{1}+x_{2}+4 x_{3} & =10 .
\end{aligned}
$$

Problem 4 Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an invertible linear transformation such that $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{2}+2 x_{3}, x_{1}+3 x_{3}, 4 x_{1}-3 x_{2}+8 x_{3}\right)$. Find a formula for T^{-1}.

Problem 5 Let $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 4\end{array}\right]$. Find orthonormal bases for the column space $\operatorname{Col}(A)$, the row space $\operatorname{Row}(A)$, and the null space $\operatorname{Nul}(A)$.

Problem 6 Let $P=\left[\begin{array}{ll}0.8 & 0.3 \\ 0.2 & 0.7\end{array}\right]$. Let $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ be the Markov chain defined by $\mathbf{x}_{0}=$ $\left[\begin{array}{l}0.4 \\ 0.6\end{array}\right]$ and $\mathbf{x}_{i+1}=P \mathbf{x}_{i}$ for $i=0,1,2, \ldots$.

Find the steady-state vector for P and an explicit formula for \mathbf{x}_{i}.

Problem 7 Find the solution of the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}+3 x_{2}+3 x_{3} \\
x_{2}^{\prime} & =-3 x_{1}-5 x_{2}-3 x_{3} \\
x_{3}^{\prime} & =3 x_{1}+3 x_{2}+x_{3}
\end{aligned}
$$

that satisfies $x_{1}(0)=1, x_{2}(0)=-1$ and $x_{3}(0)=2$.

Problem 8 Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(1,3),(2,5),(4,7)$ and $(5,9)$.

