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If two h

armonic functiong
S u an
D, they e

are the real anq imaginary pa

monic conjugate function o
1 the use of “conjugate”

atisfy the Cauchy-Riemann equations in a domain

Its of an analytic function fin D. Then v is said to

do witl e )f u in D. (Of course, this has absolutely nothing to
Z,

How to Find a Harmonic Conjugate Function b
Verify that i = 42 —
v of u.

y the Cauchy—Riemann Equations

2 3
Y = vis i - . : uncti
] Y 1s harmonic in the whole complex plane and find a harmonic conjugate function

Solution. v2, -
Riemann equations a

I

0 by direct calculation. Now Uy = 2x

: and u,
Conjugate v of u muygt satisfy

—2y — 1. Hence because of the Cauchy—

Uy = Uy = 2, Uy = —Uy =2y + 1.
e ey ~ ] . 4 . ~ oy . 1
Integrating the first €quation with respect to y and differentiating the result with respect to x, we obtain

1}
UV = 2xy + h(x), Uy =2y + Q.

dx
A comparison with the second e

quation shows that dh/dx = 1. This gives h(x) = x + ¢. Hencev = 2xy + x + ¢
(c any real constant) is the most

general harmonic conjugate of the given u. The corresponding analytic function is

fO=u+iv=x®-y2—y4ioxy+x+ ¢) = +ig+ ic. n

Example 4 illustrates that a conjugate of a given harmonic function is uniquely determined
up to an arbitrary real additive constant.
The Cauchy-Riemann equations are the most important equations in this chapter. Their

relation to Laplace’s equation opens a wide range of engineering and physical applications,
as shown in Chap. 18.

= PROBLEM SET 13-4

C uchy—Riemann equations in polar form. Derive (7) 14. v = xy ISS=— —t—_L—‘é
rom (1). 16. u = sin xcosh y 17. v = 2x = 1)y
: 185u = x° — 3xyz
CAUCHY-RIEMANN EQUATIONS 1o e
. o 20 7 3 L =,
11.0‘_”1[13 functions analytic? Use (1) or (7) 20. Laplace’s equation. Give the details of the derivative
2z of (9).
) = e “cos (y) — ie *sin (y) -
. (}i). xin’) . 21-24| Determine a and b so that the given function is
E° (cozs s _;:lm '};) harmonic and find a harmonic conjugate.
?‘(z, U [ (< i 1o /odk 21. u = e ™ cos ay
-2 7. flo) = —ifz
i 22, u = cos ax cosh 2y
23 u=axd + bxy
24. u = cosh ax cos y
‘ : (x) sinh (3) 25. CAS PROJECT. Equipotential Lines. Write a
: 2;: LCOS X program for graphing equipotential lines u = const of
JNCTIONS a harmonic function u and of its conjugate v on the
f .9 If your answer same axes. Apply the program to (a) u = x2 — Vo
SharﬂlonlC- Wy v=2.x’(b)u=\73—3 2U=3x2_3
ne analytic function f(2) = 20 ey Lo
g 26. Apply the program in Prob. 25 to u = ¢®cosy,
b v = ¢”sin y and to an example of your own.
=
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30. TEAM PROJECT. Conditions for f(z) = copgq »

27. Harmoni i R ;
onic conjugate. Show that if # is harmonic and o ALY Prove that each of the f"UOWing

v is a harmonic conjugate of u, th is a h i (z) b )5 e
conjugate of —v. AL oot {onditions is sufficient for f(z) = const.
28. Illustrate Prob. 27 by an example. (a) Ref(z) = const
29. Two further formulas for the derivative. Formulas (4), (b) Imf(z) = const
(5), and (11) (below) are needed from time to time. Derive () fl@=0

Al)senfi(e) =ugns iup £l@) = vy + ivg. ) |f ()| = const (sce Example 3)

~13.5 Exponential Function

In the remaining sections of this chapter we discuss the basic' elementary complex
functions, the exponential function, trigonometric functions, logarithm, and so on. They
will be counterparts to the familiar functions of calculus, to which they reduce when z = x
is real. They are indispensable throughout applications, and some of them have interesting
properties not shared by their real counterparts.
We begin with one of the most important analytic functions, the complex exponential
B i function

e, also written exp z.

Tismmimennt o,
~ The definition of ¢* in terms of the real functions ¢, cos y, and sin y is
m -MJ gl

(1) e” = e®(cosy + isiny).

This definition is motivated by the fact the ¢ extends the real exponential function ¢” of
~ calculus in a natural fashion. Namely:
 (A) ¢ = €” for real z = x because cos y = 1 and siny = 0 when y = 0.

(B) € is analytic for all z. (Proved in Example 2 of Sec. 13.4.)

(C) The derivative of &” is €, that is,

(2) () =i
~ This follows from (4) in Sec. 134,
()" = (€” cos y); + i(e"sin y), = €% cos y + ie® sin e

B R, This definition provides for a relatively simple discussion. We could define ¢
by the familiar series 1 + x + x%/21 + x3/31 4 ... with x replaced by z, but we would

m ave to discuss complex series at this very early stage. (We will show the connection

in Sec. 15.4.)

Qp(.erties. A function f(z) that is anal
entire. Just as in calculus the functio

B viqq/

ytic for all z is called an entire function-
nal relation

21+2s

e ezlez2
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Periodicity of ¢* with period 277,

PR for all z
0 =0
(12) ¥

is a basic property that follows from ( I) and the perl(zld{cnt)[/] O}f] (j:::():'] tarlldts!n Y. Hen ’
Aeenme are already assumed in the horizontal stri :
the values that w = ¢® can assume are aheady assuim p of Width W

. 4
This infinite strip is called a fundamental region OfLce)

© EXAMPLE 1 Function Values. Solution of Equations
Computation of values from (1) provides no problem. For instance,
o14=06i = ;140065 0.6 — isin 0.6) = 4.055(0.8253 — 0.5646i) = 3.347 — 2.289;

|el.4—1.6i| = el.4 — 4‘055’ Arg el.4—0.6i = —0.6.

To illustrate (3), take the product of

2t = ¢%(cos 1 + isin 1) and e*~% = e*(cos 1 — isin 1)
~ and verify that it equals e2e*(cos? | + sin? 1) = 8 = (20 T@-D

To solve the equation ¢® = 3 + 4i, note first that |¢*| = ¢ = 5,x = In5 = 1.609 is the real part of all
solutions. Now, since ¢* = 5,

g% cosyl= 3, e“siny = 4, cosy = 0.6, siny = 0.8, y = 0.927.

j 1'60_9 + 0.927i = 2nri (n = 0, 1,2, ). These are infinitely many solutions (due to the periodicity
ey lie on the vertical line x = 1.609 at a distance 277 from their neighbors. 1

marize: S properties of e* = exp z parallel those of ¢”: an exception is the
city of e with 2774, which suggested the concept of a fundamental region. Keep

: <. : . :
d that e* is an entire function. (Do you still remember what that means?)

‘

__b~ 294 o 0| s e oy,
BT .

o X
sl {dwods

Fig. 336. Fundamental region of the
exponential function e? in the z-plane

8-13 | Polar Form. Write in exponential form (6)

8. vz 9,3 — 4

10. \/1:, V=i 11. _%

12, 1/(1 - z) ] S

1417 ; - im o
Real and Imaginary Parts. Find Re and

14, ¢

15. exp (—z?)
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16. ek 17. exp (%) (d) Uniqueness. It is interesting that f(z) = ¢ is
18. TEAM PROJE(.ZT. Further Properties of the Ex- uniquely determined by the two properties f(x + i0) =
poneﬂtial Function. (a) Ana]ylicily. Show that ¢7 i ¢ and f'(z) = f(z), where [ is assumed to be entire.
entire. What about e'/#? ¢#9 e"(cos ky + isin ky)? (Use Prove this using the Cauchy-Riemann equations.
the Cauchy-Riemann equations.) : ‘

(b) Special values. Find all ; such ha (i) €® is real E—ZZI Equations. Find all solutions and graph some
(i) e 7| < 1, (iii) €% = ¢*. s

of them in the complex plane.
(¢) Harmonic function. Show

) that y = ™ o 19, % = 1 oA
(x2/2 — y°/2) is harmonic :

ind find a conjugate. 2102 =) 1 o=

Il

3.6 Trigonometric and Hyperbolic Functions.
Euler’s Formula

Just as we extended the real ¢” to the complex ¢ in Sec.
the familiar real trigonometric functions to complex trigon
this by the use of the Euler formulas (Sec. 13.5)

13.5, we now want to extend
ometric functions. We can do

e = cosx + isinx, €4 Gm—+CO8 Xi— i S11 .

By addition and subtraction we obtain for the real cosine and sine
y g 3 1 5 o
cosx = 1(e™® + ¢7™), Sinie == El-,(e”‘ —a &)

This suggests the following definitions for complex values z = y + iy:

% ; ! 2 : l : s
s a5 "4 éﬁcpsz = %(ezz +e™"), sinz = o (6% — ™7,

remarkable that here in complex, functions come together that
 not an isolated incident but is typical of the general situatio

orking in complex.

s in calculus we define

are unrelated in
n and shows the

sin z : Cos 7
= — otz = —
anz = o7 Colg = Tr z
B Bthg e d
86CZ = Cos 7’ SR

z and sin z are entire functions. tan z and sec 7 are no

‘ ' L entire; they
. points where cos z is zero; and cot z

and csc z are analytic except
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PROBLEM SET 13.6

14 FORMULAS FOR HYPERBOLIC FUNCTIONS
Show that

1. coshz = coshxcosy + isinhxsiny

sinh z = sinh x cos y + i cosh x sin y.

2. cosh(z; + z5) = cosh z; cosh z5 + sinh z; sinh zo

~sinh ( 1 + z2) = sinh z; cosh z5 + cosh z; sinh z5.

3. cosh®z — sinh®z = 1, cosh®z + sinh®z = cosh 2z

4. Entire Functions. Prove that cos z. sin z. cosh z, and
sinh z are entire.

5. Harmonic Functions. Verify by differentiation that
Im cos z and Re sin z are harmonic.

F fn‘-- Values. Find, in the form u# + iv,
7. cos(—i), sin(—i)
CO h 77i

Ecos (—1 — 2i)

4i), cosh (3 + 4i)

by the relation

and z = re”, this becomes

11. sinZi. cos(3 — 5i)
| /3 cos%‘u'i, cos [%-77(1 + )]

13-15  Equations and Inequalities. Using the defin;.

(Note that z = 0 is impossible, since %

Now, from Sec. 13.5, we know that ¢*+i
These must be equal to the absolute value

tions, prove:

13. cosz is even, cos(—z) =cosz. and sinz is odd.
sin(—z) = —sinz.

14. |sinhy| = |cos z| = coshy.|sinhy| = [sinz| = coshy.
Conclude that the complex cosine zand sine are not

bounded in the whole complex plane.
= 7 ol - -
15. sin zjcos zo = 3[sin(zy + z2) + siniz; — 25)]

16-19 | Equations. Find all solutions
16. sinz = 100 17. cosh2z =0
18. coshz = —1 19. sinhz =0

20. Re tan z and Im tan z. Show that

sin x cos x
Retanz = 5 SR
cos“x + sinh“y
sinh y cosh ¥
Imtanz =

. . >
cosZx + sinh? ¥

Logarithm. General Power. Principal Value

We finally introduce the complex logarithm, which is more complicated than the real
logarithm (which it includes as a special case) and hist,

for some time (so if you first get puzzled—which need n

through this section with extra care).
The natural logarithm of z = x + jy

is defined as the inverse of the exponenti

orically puzzled mathematicians
ot happen!-—be patient and work

is denoFed by In z (sometimes also by log 2) and
al function; that is, w = In - is defined for z = 0

e =z

# Oforall w; see Sec. 13.5.) Ifwe setw = u + ¥

has the absolute value e* and the argument U-
and argument on the right:
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. ¥ Lot 1 ¢ >/ -
It is a convention that for regl positive z = x the expression 77 means ¢
is the elementary real natural logarithm (that is, the principal value Ln 7 (7
the sense of our definition). Also, if z = e, the base of the natural logarithim, 7 -

CHAP, 13 Complex Numbers and Functions, Complex Differentiation

eing
where |y P

X > ()) ift
a

conventionally regarded as the unique value obtained from (1) in Sec. 13.5,
From (7) we see that for any complex number 4,

(8)

4t = ezlna'

We have now introduced the complex functions needed in practical work. come of ther
(€%, cos z, sin z, cosh z, sinh z) entire (Sec. 13.5), some of them (tan z, cot 7, tanh 7, coth 7
analytic except at certain points, and one of them (In z) splitting-up into infinitely many
functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

BLEM-SET 13-7

VERIFICATIONS IN THE TEXT
the computations in Example 1,
(5) forzy = —iandzy = ~1.

) and (4b).

NATURAL LOGARITHM In z
rincipal Value;Lnlz. Find Ln z when z equals
S 3 8
- ¢ “gfw 1 £
W18 20,1/

‘ffu"

of In (i%) differs from the

ind the principal value.
PHETE

26.
28.
29,

30.

(072 27, (—1)**
(3 + 4i)'/3
How can you find the answer 1o Prob. 24 from the

answer to Prob. 237

TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
= arcsin z is the relation such that sin w = z. The
inverse cosine w = arccos z is the relation such that
cos w = z. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using sinw = (¢ — ¢~)/(2i) and
similar representations of cos w, etc., show that

(a) arccos z = —iIn(z + V722 — 1)
(b) arcsinz = —jIn (iz + M)
(€) arccoshz = In (7 + \/ZZTI)
(d) arcsinh z = In (z + \/ZZTI)

() arctanz = -1 L1 2
[
(f) arctanh z = ~l~|n ik
2 1 =2

(g) .‘.il'mw ‘lhul W = arcsin z is infinitely mém)""aluw’
i:nd i wy is one of these values, the others are of the
fOrm Wy % 2n7r and 7 — w, % 2pm, n = 0,1,
(The principal value oW = u + iv = arcsin zis defined
1o be the value for which ~T/2Sus W/é ifvz0
and =7/2 < y < 7/2ifp < 0.) 3



