

Department of Mathematical Sciences

Examination paper for TMA4285 Time Series

Academic contact during examination: Professor Gunnar Taraldsen

Phone: 46432506

Examination date: November 25, 2020

Examination time (from-to): 09:00 - 13:00

Permitted examination support material: A: All printed and hand-written support material is allowed. All calculators are allowed.

Other information:

You may write in English or Norwegian.

All answers have to be justified. They should include enough details in order to see how they have been obtained.

All 25 sub-problems carry the same weight for grading.

Language: English Number of pages: 4 Number of pages enclosed: 0

Informasjon om trykking av eksamensoppgave			
Originalen er:			
1-sidig		2-sidig	\boxtimes
sort/hvit		farger	\boxtimes
skal ha flervalgskjema			

Checked by:

Date S

Signature

Problem 1 Let $X = \{X_t | t \in \mathbb{Z}\}$ with

$$X = (1 + aB)(1 + bB^7)Z$$
 (1)

where B is the backshift operator and $Z = \{Z_t | t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$. For calculations assume a = -0.5282, b = -0.4920, and $\sigma^2 = 0.4090$.

- **a)** Show that $X \sim \text{ARMA}(p,q)$ and determine p and q.
- **b)** Prove that X is causal.
- c) Is Z uniquely determined by X?
- d) Calculate the covariance function γ of X.
- e) How is the best linear predictor \hat{X}_n of X_n given X_1, \ldots, X_{256} defined, and is it unique?

Assume that

$$(1-B)(1-B^7)T = X (2)$$

- f) Is T weakly stationary?
- g) Is T uniquely determined by Z?
- h) Let \hat{T}_n be the best linear predictor of T_n given T_{-7}, \ldots, T_{256} . Let t_{-7}, \ldots, t_{256} be given. Demonstrate how \hat{t}_{200} , \hat{t}_{257} , and \hat{t}_{300} can be calculated together with an uncertainty estimate.
- i) State the necessary assumptions for the calculation of \hat{t}_{200} , \hat{t}_{257} , and \hat{t}_{300} .

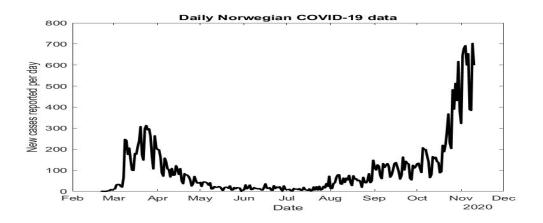


Figure 1: Daily numbers $y_{-7}, y_{-6}, \ldots, y_{256}$ of new reported cases of COVID-19 in Norway from February 21th to November 10th 2020.

Problem 2 The key assumption in the following is that the daily COVID-19 data in Figure 1 are realized values of parts of an integer valued stochastic process $Y = \{Y_t | t \in \mathbb{Z}\}.$

- a) Explain why the key assumption is reasonable.
- **b)** What are the possible values for Y_{300} ?
- c) Is it reasonable to assume that Y_{300} has a Poisson distribution?
- d) Define mathematically the laws of Y and $(Y_{-7}, Y_{-6}, \ldots, Y_{256})$ in terms of the underlying probability space (Ω, \mathcal{E}, P) .
- e) How can $g(y) = P(Y_{300} = y | Y_{-7} = y_{-7}, Y_{-6} = y_{-6}, \dots, Y_{256} = y_{256})$ be calculated if the law of Y is known.
- f) Assume that the law of Y is known and hence that g is known. Provide at least two reasonable predictions of y_{300} and explain how you can quantify the uncertainty.
- g) Prove that

$$T = \log(\max(Y, 0.1)) \tag{3}$$

is a stochastic process.

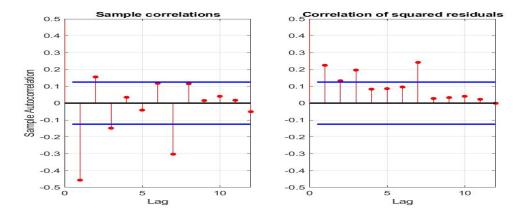


Figure 2: Correlation function estimates.

Problem 3 Let T be given by equation (3) and let

$$X = (1 - B)(1 - B^7)T$$
(4)

where B is the backshift operator. The left of Figure 2 shows the sample correlation $\hat{\rho}$ of x_1, \ldots, x_{256} obtained from equations (4)-(3) and the data in Figure 1.

- a) How is $\hat{\rho}$ calculated?
- b) Figure 1 and Figure 2 can be used to motivate using the model

$$X = (1 + aB)(1 + bB^7)Z$$
(5)

where $Z \sim WN(0, \sigma^2)$. Why?

- c) The empirical covariance function of x_1, \ldots, x_{256} is $\hat{\gamma}(0) = 0.6252$, $\hat{\gamma}(1) = -0.2859, \ldots, \hat{\gamma}(7) = -0.1896, \ldots$ Use this to estimate a, b and σ^2 .
- d) How can a, b, σ^2 be estimated by the maximum likelihood method?
- e) How can the previous be used to forecast Y_{300} ?
- f) How can z_1, \ldots, z_{256} be estimated using equation (5)?
- g) Testing of residuals supports the assumption $Z \sim WN(0, \sigma^2)$. Is it reasonable to assume that Z is Gaussian?

- h) The right part of Figure 2 motivates to consider a GARCH model for Z. Why?
- i) Explain how a GARCH(1, 1) model can be fitted to Z.