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If you want to have a nicer theme for your jupyter notebook, download the cascade stylesheet file
tma4125.css and execute the next cell:

[1]: from IPython.core.display import HTML
def css_styling():

try:
with open("tma4125.css", "r") as f:

styles = f.read()
return HTML(styles)

except FileNotFoundError:
pass #Do nothing

# Comment out next line and execute this cell to restore the default notebook␣
↪→style

css_styling()

[1]: <IPython.core.display.HTML object>

2 Introduction

Imagine you want to compute the finite integral

I[ f ](a, b) =
∫ b

a
f (x)dx.

The “usual” way is to find a primitive function F (also known as the indefinite integral of f )
satisfying F′(x) = f (x) and then to compute

∫ b

a
f (x)dx = F(b)− F(a).
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While there are many analytical integration techniques and extensive tables to determine definite
integral for many integrands, more often than not it may not feasible or possible to compute the
integral. For instance, what about

f (x) =
log(2 + sin(1/2−

√
(x))6)

log(π + arctan(
√

1− exp(−2x− sin(x)))
?

Finding the corresponding primitive is highly likely a hopeless endeavor. And sometimes there
even innocent looking functions like e−x2

for which there is not primitive functions which can
expressed as a composition of standard functions such as sin, cos . etc.

A numerical quadrature or a quadrature rule is a formula for approximating such definite inte-
grals I[ f ](a, b). Quadrature rules are usually of the form

Q[ f ](a, b) =
n

∑
i=0

wi f (xi),

where xi, wi for i = 0, 1, . . . , n are respectively the nodes/points and the weights of the quadrature
rule. To emphasize that a quadrature rule is defined by some given quadrature points {xi}n

i=0 and
weights {wi}n

i=0.

We sometimes might write

Q[ f ]({xi}n
i=0, {wi}n

i=0) =
n

∑
i=0

wi f (xi).

If the function f is given from the context, we will for simplicity denote the integral and the
quadrature simply as I(a, b) and Q(a, b).

2.1 Example 1: Quadrature rules from previous math courses

The trapezoidal rule, the midpoint rule and Simpson’s rule known from previous courses are all
examples of numerical quadratures, and we quickly review them here:

• Midpoint rule is the simplest possible quadrature rule defined by

Q[ f ](a, b) := (b− a) f
(

a + b
2

)
.

The node is given by the midpoint, x0 = a+b
2 with the corresponding weight w0 = b− a.

Q[ f ](a, b) = w0 f (x0)

• Trapezoidal rule is given by

Q[ f ](a, b) := (b− a)
(

f (a) + f (b)
2

)
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and thus the nodes are defined by x0 = a, x1 = b with corresponding weights w0 = w1 = b−a
2 .

• Finally, Simpson’s rule which you know from M1, is defined as follows:

Q[ f ](a, b) =
b− a

6

(
f (a) + 4 f

(
a + b

2

)
+ f (b)

)
,

which we identify as quadrature rule with 3 points x0 = a, x1 = a+b
2 , x2 = b and corresponding

weights w0 = w2 = b−a
6 and w1 = 4(b−a)

6 .

In this note we will see how quadrature rules can be constructed from integration of interpolation
polynomials. We will demonstrate how to do error analysis and how to find error estimates. In
the sequel, we will use material from Preliminaries, section 3.2, 4 and 5.

As usual, we import the necessary modules before we start computing.

[1]: %matplotlib inline

from numpy import *
from matplotlib.pyplot import *
from math import factorial
newparams = {'figure.figsize': (8.0, 4.0), 'axes.grid': True,

'lines.markersize': 8, 'lines.linewidth': 2,
'font.size': 14}

rcParams.update(newparams)

3 Quadrature based on polynomial interpolation.

This section relies on the content of the note on polynomial interpolation, in particular the section
on Lagrange polynomials.

Choose n + 1 distinct nodes xi, i = 0, . . . , n in the interval [a, b], and let pn(x) be the interpolation
polynomial satisfying the interpolation condition

pn(xi) = f (xi), i = 0, 1, . . . n.

We will then use
∫ b

a pn(x)dx as an approximation to
∫ b

a f (x)dx. By using the Lagrange form of
the polynomial

pn(x) =
n

∑
i=0

f (xi)`i(x)

with the cardinal functions `i(x) given by

`i(x) =
n

∏
j=0,j 6=i

x− xj

xi − xj
,
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the following quadrature formula is obtained

I[ f ](a, b) ≈ Q[ f ](a, b) =
∫ b

a
pn(x)dx

=
n

∑
i=0

f (xi)
∫ b

a
`i(x)dx =

n

∑
i=0

wi f (xi) = Q(a, b),

where the weights in the quadrature are simply the integral of the cardinal functions over the
interval

wi =
∫ b

a
`i(x)dx for i = 0, . . . , n.

Let us derive three schemes for integration over the interval [0, 1], which we will finally apply to
the integral

I(0, 1) =
∫ 1

0
cos

(π

2
x
)
=

2
π

= 0.636619 . . . .

3.1 Example 2: The trapezoidal rule revisited

Let x0 = 0 and x1 = 1. The cardinal functions and thus the weights are given by

`0(x) = 1− x, w0 =
∫ 1

0
(1− x)dx = 1/2

`1(x) = x, w1 =
∫ 1

0
x dx = 1/2

and the corresponding quadrature rule is the trapezoidal rule (usually denoted by T) recalled in
Example Example 1: Quadrature rules from previous math courses with [a, b] = [0, 1]:

T(0, 1) =
1
2
[ f (0) + f (1)] .

3.2 Example 3: Gauß-Legendre quadrature for n = 2

Let x0 = 1/2 +
√

3/6 and x1 = 1/2−
√

3/6. Then

`0(x) = −
√

3x +
1 +
√

3
2

, w0 =
∫ 1

0
`0(x)dx = 1/2,

`1(x) =
√

3x +
1−
√

3
2

, w1 =
∫ 1

0
`1(x)dx = 1/2.

The quadrature rule is
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Q(0, 1) =
1
2

[
f

(
1
2
−
√

3
6

)
+ f

(
1
2
+

√
3

6

)]
.

3.3 Example 4: Simpson’s rule revisited

We construct Simpson’s rule on the interval [0, 1] by choosing the nodes x0 = 0, x1 = 0.5 and
x2 = 1. The corresponding cardinal functions are

`0 = 2(x− 0.5)(x− 1) `1(x) = 4x(1− x) `2(x) = 2x(x− 0.5)

which gives the weights

w0 =
∫ 1

0
`0(x)dx =

1
6

, w1 =
∫ 1

0
`1(x)dx =

4
6

, w2 =
∫ 1

0
`2(x)dx =

1
6

such that

∫ 1

0
f (x)dx ≈

∫ 1

0
p2(x)dx =

2

∑
i=0

wi f (xi) =
1
6
[ f (0) + 4 f (0.5) + f (1) ] .

3.4 Exercise 1: Accuracy of some quadrature rules

Use the QR function

[3]: def QR(f, xq, wq):
""" Computes an approximation of the integral f
for a given quadrature rule.

Input:
f: integrand
xq: quadrature nodes
wq: quadrature weights

"""
n = len(xq)
if (n != len(wq)):

raise RuntimeError("Error: Need same number of quadrature nodes and␣
↪→weights!")

return np.array(wq)@f(np.array(xq))

to compute an approximate value of integral

I(0, 1) =
∫ 1

0
cos

(π

2
x
)
=

2
π

= 0.636619 . . . .

using the quadrature rules from Example Example 2: The trapezoidal rule revisited-Example 4:
Simpson’s rule revisited. Tabulate the corresponding quadrature errors I(0, 1)−Q(0, 1).
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[4]: # Insert your code here.

Hint. You can start with (fill in values for any . . .)

[ ]: # Define function
def f(x):

return ...

# Exact integral
int_f = ...

# Trapezoidal rule
xq = [...]
wq = [..., ...]

qr_f = QR(f, xq, wq)
print("Q[f] = {}".format(qr_f))
print("I[f] - Q[f] = {:.10e}".format(int_f - qr_f))

3.4.1 Remarks

We observe that with the same number of quadrature points, the Gauß-Legendre quadrature gives
a much more accurate answer then the trapezoidal rule. So the choice of nodes clearly matters.
Simpon’s rule gives very similar results to Gauß-Legendre quadrature, but it uses 3 instead of 2
quadrature nodes.

4 Degree of exactness and an estimate of the quadrature error

Motivated by the previous examples, we know take a closer look at how assess the quality of a
method. We start with the following definition.

4.1 Definition 1: The degree of exactness

A numerical quadrature has degree of exactness d if Q[p](a, b) = I[p](a, b) for all p ∈ Pd and there
is at least one p ∈ Pd+1 such that Q[p](a, b) 6= I[p](a, b).

Since both integrals and quadratures are linear in the integrand f , the degree of exactness is d if

I[xj](a, b) = Q[xj](a, b), j = 0, 1, . . . , d,

I[xd+1](a, b) 6= Q[xd+1](a, b).

Observation: All quadratures constructed from Lagrange interpolation polynomials in n + 1 dis-
tinct nodes will automatically have a degree of exactness of least n. This follows immediately
from the fact the interpolation polynomial pn ∈ Pn of any polynomial q ∈ Pn is just the original
polynomial q itself.
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4.2 Exercise 2: Degree of exactness for some quadrature rules

• Show that the trapezoidal and midpoint rule from Example Example 1: Quadrature rules
from previous math courses is of precision 1

• Show that the Gauß-Legendre quadrature for 2 points from Example Example 3: Gauß-
Legendre quadrature for n=2 is of precision 3.

• Show that Simpson’s rule from Example Example 4: Simpson’s rule revisited is also of pre-
cision 3.

[ ]: # Insert your code here.

Hint. You can do this either using pen and paper (boring!) or numerically (more fun!), using the
code from Example Exercise 1: Accuracy of some quadrature rules

Solution.

4.3 Error estimates

4.4 Theorem 1: Error estimate for quadrature rule with degree of exactness n

Assume that f ∈ Cn+1(a, b) and let Q[·]({xi}n
i=0, {wi}n

i=0) be a quadrature rule which has degree
of exactness n. Then the quadrature error |I[ f ]−Q[ f ]| can be estimated by

|I[ f ]−Q[ f ]| 6 M
(n + 1)!

∫ b

a

n

∏
i=0
|x− xi|dx

where M = maxξ∈[a,b] | f n+1(ξ)|.

Proof. Let pn ∈ Pn be the interpolation polynomial satisfying pn(xi) = f (xi) for i = 0, . . . , n.
Thanks to the error estimate for the interpolation error, we know that

f (x)− pn(x) =
f n+1(ξ(x))
(n + 1)!

n

∏
k=0

(x− xk).

for some ξ(x) ∈ (a, b). Since Q(a, b) has degree of exactness n we have I[pn] = Q[pn] = Q[ f ] and
thus

|I[ f ]−Q[ f ]| = |I[ f ]− I[pn]| 6
∫ b

a
| f (x)− pn(x)|dx

=
∫ b

a

∣∣∣∣∣ f n+1(ξ(x))
(n + 1)!

n

∏
k=0

(x− xk)

∣∣∣∣∣dx 6
M

(n + 1)!

∫ b

a

n

∏
k=0
|(x− xk)|dx,

which concludes the proof.

The previous theorem often The advantage of the previous theorem is that it is easy to prove. On
downside is that the provided estimate can be rather crude, and often sharper estimates can be
established. We give two examples here of some sharper estimates (but without proof).
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4.5 Theorem 2: Error estimate for the trapezoidal rule

For the trapezoidal rule, there is a ξ ∈ (a, b) such that

I[ f ]−Q[ f ] =
(b− a)3

12
f ′′(ξ).

4.6 Theorem 3: Error estimate for Simpson’s rule

For Simpson’s rule, there is a ξ ∈ (a, b) such that

I[ f ]−Q[ f ] = − (b− a)5

2880
f 4(ξ).
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