TMA4285 Time series models Solution to exercise 1, autumn 2018

August 28, 2018

Problem A. 4

We can solve this problem using the moment generating function, $M_{X}(t)=$ $E\left(e^{t X}\right), t \in \mathbb{R}$.

$$
\begin{aligned}
M_{\boldsymbol{X}}(\boldsymbol{t}) & =M_{\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{Z}+\boldsymbol{\mu}}(\boldsymbol{t})=E\left(e^{\boldsymbol{t}^{T}\left(\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{Z}+\boldsymbol{\mu}\right)}=e^{\boldsymbol{t}^{T} \boldsymbol{\mu}} E\left(e^{\boldsymbol{t}^{T} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{Z}}\right)\right. \\
& =e^{\boldsymbol{t}^{T} \boldsymbol{\mu}} M_{\boldsymbol{Z}}\left(\boldsymbol{t}^{T} \boldsymbol{\Sigma}^{1 / 2}\right)=e^{t^{T} \boldsymbol{\mu}} e^{\frac{1}{2} \boldsymbol{t}^{T}\left(\boldsymbol{\Sigma}^{1 / 2}\right)^{2} \boldsymbol{t}}=e^{\boldsymbol{t}^{T} \boldsymbol{\mu}+\frac{1}{2} t^{T} \boldsymbol{\Sigma} t}
\end{aligned}
$$

which is the moment generating function for a multivariate normal distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

Note that the standard normal multivariate distribution has $M_{\boldsymbol{Z}}(\boldsymbol{t})=e^{\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{I t}}$.

Problem A. 5

Since \boldsymbol{Y} is a linear combination of a Gaussian vector \boldsymbol{X} (a special case of a Gaussian process), \boldsymbol{Y} is also Gaussian. We specify the mean and covariance matrix of $\boldsymbol{Y}=\boldsymbol{a}+B \boldsymbol{X}$.

$$
\begin{aligned}
E(\boldsymbol{Y}) & =E(\boldsymbol{a}+\boldsymbol{B} \boldsymbol{X})=E(\boldsymbol{a})+\boldsymbol{B} E(\boldsymbol{X})=\boldsymbol{a}+\boldsymbol{B} \boldsymbol{\mu} \\
\operatorname{Cov}(\boldsymbol{Y}) & =\boldsymbol{B} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{B}^{T}=\boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{T}
\end{aligned}
$$

Problem A. 6

Let $\boldsymbol{X}=\left[\begin{array}{l}\boldsymbol{X}_{1} \\ \boldsymbol{X}_{2}\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{l}\boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2}\end{array}\right]$, and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right]$. Let $\boldsymbol{X} \sim \operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
Proof proposition A.3.1:
i: $\boldsymbol{\Sigma}_{12}=0 \rightarrow$ independence: If $\boldsymbol{\Sigma}_{12}=0$ then $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{T}=0$, and $\boldsymbol{\Sigma}=$ $\left[\begin{array}{cc}\boldsymbol{\Sigma}_{11} & \boldsymbol{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}\end{array}\right]$. Then $M_{\boldsymbol{X}}(\boldsymbol{t})=e^{\boldsymbol{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{\Sigma} \boldsymbol{t}}=e^{t_{1}^{T} \boldsymbol{\mu}_{1}+\frac{1}{2} \boldsymbol{t}_{1}^{T} \boldsymbol{\Sigma}_{11} \boldsymbol{t}_{1}} e^{\boldsymbol{t}_{2}^{T} \boldsymbol{\mu}_{2}+\frac{1}{2} \boldsymbol{t}_{2}^{T} \boldsymbol{\Sigma}_{22} \boldsymbol{t}_{2}}=$ $M_{\boldsymbol{X}_{1}}\left(\boldsymbol{t}_{1}\right) M_{\boldsymbol{X}_{2}}\left(\boldsymbol{t}_{2}\right)$, which means that \boldsymbol{X}_{1} and \boldsymbol{X}_{2} are independent.

Independence $\rightarrow \boldsymbol{\Sigma}_{12}=0$: We can use the same argument going backwards. If we have independence, we must have $M_{\boldsymbol{X}}(\boldsymbol{t})=M_{\boldsymbol{X}_{1}}\left(\boldsymbol{t}_{1}\right) M_{\boldsymbol{X}_{2}}\left(\boldsymbol{t}_{2}\right)$, which is only achivelable if $\boldsymbol{\Sigma}=\left[\begin{array}{cc}\boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}\end{array}\right]$.
ii: The conditional distribution of $\boldsymbol{X}_{2} \mid \boldsymbol{X}_{1}=\boldsymbol{x}_{1}$ is $\mathcal{N}\left(\boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}\left(\boldsymbol{x}_{1}-\right.\right.$ $\left.\left.\boldsymbol{\mu}_{1}\right), \boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}\right)$.

Proof:
Let $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{I} & \mathbf{0}\end{array}\right]$ such that $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{X}_{1}$, and let $\boldsymbol{B}=\left[\begin{array}{cc}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} & \boldsymbol{I}\end{array}\right]$ such that $\boldsymbol{B} \boldsymbol{X}=-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{X}_{1}+\boldsymbol{X}_{2}$. Then $\boldsymbol{X}_{2}=\boldsymbol{B} \boldsymbol{X}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{X}_{1} . \boldsymbol{A} \boldsymbol{X}$ and $\boldsymbol{B} \boldsymbol{X}$ are independent since $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{B}^{T}=0$.

Next, find $E(\boldsymbol{B X})$ and $\operatorname{Cov}(\boldsymbol{B X})$,

$$
\begin{aligned}
E(\boldsymbol{B} \boldsymbol{X}) & =\boldsymbol{\mu}_{2}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\mu}_{1} \\
\operatorname{Cov}(\boldsymbol{B} \boldsymbol{X}) & =\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}
\end{aligned}
$$

Since $\boldsymbol{A} \boldsymbol{X}$ and $\boldsymbol{B X}$ are independent,

$$
\boldsymbol{B} \boldsymbol{X} \mid\left(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{X}_{1}\right)=\boldsymbol{x}_{1} \sim \boldsymbol{B} \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}\right)
$$

Therefore
$\boldsymbol{X}_{2}\left|\boldsymbol{X}_{1}=\boldsymbol{x}_{1} \sim \boldsymbol{B} \boldsymbol{X}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{X}_{\mathbf{1}}\right| \boldsymbol{X}_{1}=\boldsymbol{x}_{1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}\right)$.

Exercise 1.2

a)

Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Then

$$
\begin{aligned}
& E\left[\left(X_{n+1}-f(X)\right)^{2} \mid X\right]=E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)+E\left(X_{n+1} \mid X\right)-f(X)\right)^{2} \mid X\right]= \\
& E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right]+2 E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)\left(E\left(X_{n+1} \mid X\right)-f(X)\right) \mid X\right] \\
& +E\left[\left(E\left(X_{n+1} \mid X\right)-f(X)\right)^{2} \mid X\right]= \\
& E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right]+2\left(E\left(X_{n+1} \mid X\right)-f(X)\right) E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right) \mid X\right] \\
& +E\left[\left(E\left(X_{n+1} \mid X\right)-f(X)\right)^{2} \mid X\right]= \\
& E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right]+E\left[\left(E\left(X_{n+1} \mid X\right)-f(X)\right)^{2} \mid X\right] \geq E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right]
\end{aligned}
$$

because $E\left(X_{n+1} \mid X\right)$ is a function of X and $E\left(g(X) X_{n+1} \mid X\right)=g(X) E\left(X_{n+1} \mid X\right)$ for any function g such that $E\left(g(X) X_{n+1}\right)$ exists.

It follows that

$$
E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right] \leq E\left[\left(X_{n+1}-f(X)\right)^{2} \mid X\right]
$$

for any function f. Hence $E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right]$ is minimized when $f(X)=E\left(X_{n+1} \mid X\right)$.
b)

Since

$$
\begin{aligned}
& E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2}\right]=E\left(E\left[\left(X_{n+1}-E\left(X_{n+1} \mid X\right)\right)^{2} \mid X\right]\right) \\
& \leq E\left(E\left[\left(X_{n+1}-f(X)\right)^{2} \mid X\right]\right)=E\left[\left(X_{n+1}-f(X)\right)^{2}\right]
\end{aligned}
$$

it follows immediately that the random variable $f(X)$ that minimizes $E\left[\left(X_{n+1}-f(X)\right)^{2}\right]$ is again $f(X)=E\left(X_{n+1} \mid X\right)$.
c)

By b) the minimum mean-squared error predictor of X_{n+1} in terms of $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ when $X_{t} \sim I I D\left(\mu, \sigma^{2}\right)$ is

$$
E\left(X_{n+1} \mid X\right)=E\left(X_{n+1}\right)=\mu
$$

d)

Suppose that $\sum_{i=1}^{n} \alpha_{i} X_{i}$ is an unbiased estimator for μ, that is, $\sum_{i=1}^{n} \alpha_{i}=1$. Then
$E\left[\left(\sum_{i=1}^{n} \alpha_{i} X_{i}-\mu\right)^{2}\right]=E\left[\left(\sum_{i=1}^{n} \alpha_{i} X_{i}-\bar{X}\right)^{2}\right]+2 E\left[\left(\sum_{i=1}^{n} \alpha_{i} X_{i}-\bar{X}\right)(\bar{X}-\mu)\right]+E\left[(\bar{X}-\mu)^{2}\right] \geq E\left[(\bar{X}-\mu)^{2}\right]$
since the second term is zero: $E\left[\left(\sum_{i=1}^{n} \alpha_{i} X_{i}-\bar{X}\right)(\bar{X}-\mu)\right]=\operatorname{Cov}\left(\sum_{i=1}^{n} \alpha_{i} X_{i}-\bar{X}, \bar{X}\right)=\operatorname{Cov}\left(\sum_{i=1}^{n} \alpha_{i} X_{i}, \sum_{i=1}^{n} \frac{1}{n} X_{i}\right)-$ $\operatorname{Cov}\left(\sum_{i=1}^{n} \frac{1}{n} X_{i}, \sum_{i=1}^{n} \frac{1}{n} X_{i}\right)=\sum_{i=1}^{n} \frac{\alpha_{i}}{n} \sigma^{2}-\sum_{i=1}^{n} \frac{1}{n^{2}} \sigma^{2}=0$.
e)

Again, suppose that $\sum_{i=1}^{n} \alpha_{i} X_{i}$ is an unbiased estimator for μ, that is, $\sum_{i=1}^{n} \alpha_{i}=1$. Then

$$
\begin{aligned}
& E\left[\left(X_{n+1}-\sum_{i=1}^{n} \alpha_{i} X_{i}\right)^{2}\right]=E\left[\left(X_{n+1}-\bar{X}\right)^{2}\right]+2 E\left[\left(X_{n+1}-\bar{X}\right)\left(\bar{X}-\sum_{i=1}^{n} \alpha_{i} X_{i}\right)\right]+E\left[\left(\bar{X}-\sum_{i=1}^{n} \alpha_{i} X_{i}\right)^{2}\right] \\
& \geq E\left[\left(X_{n+1}-\bar{X}\right)^{2}\right]
\end{aligned}
$$

since the second term is zero: $\operatorname{Cov}\left(X_{n+1}-\bar{X}, \bar{X}-\sum_{i=1}^{n} \alpha_{i} X_{i}\right)=-\operatorname{Cov}(\bar{X}, \bar{X})+\operatorname{Cov}\left(\bar{X}, \sum_{i=1}^{n} \alpha_{i} X_{i}\right)=0$ as in d).
f)

$$
E\left(S_{n+1} \mid S_{1}, \ldots, S_{n}\right)=E\left(S_{n}+X_{n+1} \mid S_{1}, \ldots, S_{n}\right)=S_{n}+E\left(X_{n+1} \mid S_{1}, \ldots, S_{n}\right)=S_{n}+\mu
$$

since X_{n+1} is independent of S_{1}, \ldots, S_{n}.

Exercise 1.3

i)
$E\left(X_{t}\right)$ is independent of t since the distribution of X_{t} is independent of t and $E\left(X_{t}\right)$ exists.
ii)

Since $E\left[X_{t+h} X_{t}\right]^{2} \leq E\left[X_{t+h}^{2}\right] E\left[X_{t}^{2}\right]$ for all integers t, h, and the joint distribution of X_{t+h} and X_{t} is independent of t, it follows that $E\left[X_{t+h} X_{t}\right]$ exists and is independent of t for every integer h.

Combining i) and ii) it follows that X_{t} is weakly stationary.

Exercise 1.4

a)
$E\left(X_{t}\right)=a$ is independent of t.

$$
\operatorname{Cov}\left(X_{t+h}, X_{t}\right)= \begin{cases}\left(b^{2}+c^{2}\right) \sigma^{2} & ; h=0 \\ 0 & ; h= \pm 1 \\ b c \sigma^{2} & ; h= \pm 2 \\ 0 & ; \quad \mid>2\end{cases}
$$

which is independent of t. That is, X_{t} is stationary.
b)

$$
\begin{aligned}
& E\left(X_{t}\right)=0 \text { is independent of } t \\
& \qquad \\
& \quad \operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\operatorname{Cov}\left(Z_{1} \cos c(t+h)+Z_{2} \sin c(t+h), Z_{1} \cos c t+Z_{2} \sin c t\right) \\
& =\sigma^{2}(\cos c(t+h) \cos c t+\sin c(t+h) \sin c t)=\sigma^{2} \cos c h
\end{aligned}
$$

which is independent of t. That is, X_{t} is stationary.
c)
$E\left(X_{t}\right)=0$ is independent of t.

$$
\operatorname{Cov}\left(X_{t+1}, X_{t}\right)=\sigma^{2} \cos c(t+1) \sin c t
$$

which is not independent of t. That is, X_{t} is not stationary (except in the special case when c is an integer multiple of 2π).
d)
$E\left(X_{t}\right)=a$ is independent of t.

$$
\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=b^{2} \sigma^{2}
$$

which is independent of t. That is, X_{t} is stationary.
e)
$E\left(X_{t}\right)=0$ is independent of t.

$$
\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=\sigma^{2} \cos c(t+h) \cos c t
$$

which is not independent of t. That is, X_{t} is not stationary (except in the special case when c is an integer multiple of 2π).
f)
$E\left(X_{t}\right)=0$ is independent of t.

$$
\operatorname{Cov}\left(X_{t+h}, X_{t}\right)=E\left[X_{t+h} X_{t}\right]=E\left[Z_{t+h} Z_{t+h-1} Z_{t} Z_{t-1}\right]= \begin{cases}\sigma^{4} & ; h=0 \\ 0 & ; \quad|h|>0\end{cases}
$$

which is independent of t. That is, X_{t} is stationary, and it is seen that in fact $X_{t} \sim W N\left(0, \sigma^{4}\right)$.

Exercise 1.5

a)

The autocovariance function

$$
\gamma_{X}(h)= \begin{cases}1+\theta^{2} & ; h=0 \\ \theta & ; h= \pm 2 \\ 0 & ; \quad \text { otherwise }\end{cases}
$$

The autocorrelation function

$$
\rho_{X}(h)=\left\{\begin{array}{lll}
1 & ; & h=0 \\
\frac{\theta}{1+\theta^{2}} & ; & h= \pm 2 \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

For $\theta=0.8$ it is obtained that

$$
\begin{aligned}
& \gamma_{X}(h)=\left\{\begin{array}{lll}
1.64 & ; & h=0 \\
0.8 & ; & h= \pm 2 \\
0 & ; & \text { otherwise }
\end{array}\right. \\
& \rho_{X}(h)=\left\{\begin{array}{lll}
1 & ; & h=0 \\
0.488 & ; & h= \pm 2 \\
0 & ; & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

b)

Let $\bar{X}_{4}=\frac{1}{4}\left(X_{1}+\ldots+X_{4}\right)$. Then

$$
\begin{aligned}
& \operatorname{Var}\left(\bar{X}_{4}\right)=\operatorname{Cov}\left(\bar{X}_{4}, \bar{X}_{4}\right)=\frac{1}{16} \sum_{i=1}^{4} \sum_{i=1}^{4} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\frac{1}{4}\left(\gamma_{X}(0)+\gamma_{X}(2)\right)=\frac{1}{4}(1.64+0.8)=0.61
\end{aligned}
$$

c)

$$
\operatorname{Var}\left(\bar{X}_{4}\right)=\operatorname{Cov}\left(\bar{X}_{4}, \bar{X}_{4}\right)=\frac{1}{4}\left(\gamma_{X}(0)+\gamma_{X}(2)\right)=\frac{1}{4}(1.64-0.8)=0.21
$$

The negative lag 2 correlation in c) means that positive deviations of X_{t} from zero tend to be followed two time units later by a compensating negative deviation, resulting in smaller variability in the sample mean than in b) (and also smaller than if the time series X_{t} were $\operatorname{IID}(0,1.64)$ in which case $\left.\operatorname{Var}\left(\bar{X}_{4}\right)=0.41\right)$.

Exercise 1.8

a.In order to show that X_{t} is $\mathrm{WN}(0,1)$ two thing needs to be verified:
b. $\operatorname{Cov}\left(X_{t}, X_{t+h}\right)= \begin{cases}1 & \text { if } h=0 \\ 0 & \text { if } h \neq 0\end{cases}$
a. $\mathrm{E}\left[\mathrm{X}_{\mathrm{t}}\right]=0$

$$
\begin{aligned}
& E\left[X_{t}\right]= \begin{cases}E\left[Z_{t}\right] & \text { if } \mathrm{t} \text { is even } \\
E\left[\frac{\left(Z_{t-1}^{2}-1\right)}{\sqrt{2}}\right] & \text { if } \mathrm{t} \text { is odd }\end{cases} \\
& -E\left[Z_{t}\right]=0 \\
& -E\left[\frac{\left(Z_{t-1}^{2}-1\right)}{\sqrt{2}}\right]=0 \text { since } E\left[Z_{t-1}^{2}\right]=1
\end{aligned}
$$

b. $\operatorname{Cov}\left(X_{t}, X_{t+h}\right)= \begin{cases}1 & \text { if } h=0 \\ 0 & \text { if } h \neq 0\end{cases}$

If $h=0$,

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{t}, X_{t}\right)= \operatorname{Var}\left(X_{t}\right)= \begin{cases}\operatorname{Var}\left(Z_{t}\right) & \text { if } \mathrm{t} \text { is even } \\
\frac{1}{2} \operatorname{Var}\left(Z_{t-1}^{2}-1\right) & \text { if } \mathrm{t} \text { is odd }\end{cases} \\
&-\operatorname{Var}\left(Z_{t}\right)=1 \\
&-\frac{1}{2} \operatorname{Var}\left(Z_{t-1}^{2}-1\right)=1 \text { since } \operatorname{Var}\left(Z_{t-1}^{2}\right)=2: \\
& \operatorname{Var}\left(Z_{t-1}^{2}\right)=E\left(Z_{t-1}^{4}\right)-\left[E\left(Z_{t-1}^{2}\right)\right]^{2} \\
&=3-1 \quad(\text { Remind kurtosis of } \mathrm{N}(0,1) \text { r.v's }) \\
&=2
\end{aligned}
$$

If $h \neq 0, \operatorname{Cov}\left(X_{t}, X_{t+h}\right)=E\left(X_{t} X_{t+h}\right)$,
$E\left(X_{t} X_{t+h}\right)= \begin{cases}E\left(Z_{t} Z_{t+h}\right) & \text { if } \mathrm{t} \text { is even and } \mathrm{t}+\mathrm{h} \text { is even } \\ E\left(\frac{1}{\sqrt{2}} Z_{t}\left(Z_{t+h-1}^{2}-1\right)\right) & \text { if } \mathrm{t} \text { is even and } \mathrm{t}+\mathrm{h} \text { is odd } \\ E\left(\frac{1}{2}\left(Z_{t}^{2}-1\right)\left(Z_{t+h-1}^{2}-1\right)\right) & \text { if } \mathrm{t} \text { is odd and } \mathrm{t}+\mathrm{h} \text { is odd }\end{cases}$

- $E\left(Z_{t} Z_{t+h}\right)=E\left(Z_{t}\right) E\left(Z_{t+h}\right)=0$
- $E\left(\frac{1}{\sqrt{2}}\left(Z_{t}\left(Z_{t+h-1}^{2}-1\right)\right)\right)=\frac{1}{\sqrt{2}} E\left(Z_{t}\right) E\left(Z_{t+h-1}^{2}-1\right)=0$
- $E\left(\frac{1}{2}\left(Z_{t-1}^{2}-1\right)\left(Z_{t+h-1}^{2}-1\right)\right)=\frac{1}{2} E\left(Z_{t-1}^{2}-1\right) E\left(Z_{t+h-1}^{2}-1\right)=0$

In order to determine if X_{t} is $\operatorname{IID}(0,1)$ we need to see if X_{t} and X_{t+h} are independent when $h \neq 0$.

Let's assume t is odd, then:

$$
E\left(X_{t}\right)=E\left(\frac{Z_{t-1}^{2}-1}{\sqrt{2}}\right)=E\left(\frac{X_{t-1}^{2}-1}{\sqrt{2}}\right)
$$

Which means X_{t} depends on X_{t-1}. Thus, X_{t} is not $\operatorname{IID}(0,1)$ noise.
b.

If n is odd:

$$
E\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)=E\left(Z_{n+1} \mid Z_{0}, Z_{2}, Z_{4}, \ldots, Z_{n+1}\right)=0
$$

If n is even:

$$
E\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)=E\left(\left.\frac{Z_{n}^{2}-1}{\sqrt{2}} \right\rvert\, Z_{0}, Z_{2}, \ldots, Z_{n}\right)=\frac{Z_{n}^{2}-1}{\sqrt{2}}
$$

Chapter 2

Problem 2.1. We find the best linear predictor $\hat{X}_{n+h}=a X_{n}+b$ of X_{n+h} by finding a and b such that $\mathbb{E}\left[X_{n+h}-\hat{X}_{n+h}\right]=0$ and $\mathbb{E}\left[\left(X_{n+h}-\hat{X}_{n+h}\right) X_{n}\right]=0$. We have

$$
\mathbb{E}\left[X_{n+h}-\hat{X}_{n+h}\right]=\mathbb{E}\left[X_{n+h}-a X_{n}-b\right]=\mathbb{E}\left[X_{n+h}\right]-a \mathbb{E}\left[X_{n}\right]-b=\mu(1-a)-b
$$

and

$$
\begin{aligned}
\mathbb{E}[& \left.\left(X_{n+h}-\hat{X}_{n+h}\right) X_{n}\right]=\mathbb{E}\left[\left(X_{n+h}-a X_{n}-b\right) X_{n}\right] \\
= & \mathbb{E}\left[X_{n+h} X_{n}\right]-a \mathbb{E}\left[X_{n}^{2}\right]-b \mathbb{E}\left[X_{n}\right] \\
= & \mathbb{E}\left[X_{n+h} X_{n}\right]-\mathbb{E}\left[X_{n+h}\right] \mathbb{E}\left[X_{n}\right]+\mathbb{E}\left[X_{n+h}\right] \mathbb{E}\left[X_{n}\right] \\
& -a\left(\mathbb{E}\left[X_{n}^{2}\right]-\mathbb{E}\left[X_{n}\right]^{2}+\mathbb{E}\left[X_{n}\right]^{2}\right)-b \mathbb{E}\left[X_{n}\right] \\
= & \operatorname{Cov}\left(X_{n+h}, X_{n}\right)+\mu^{2}-a\left(\operatorname{Cov}\left(X_{n}, X_{n}\right)+\mu^{2}\right)-b \mu \\
= & \gamma(h)+\mu^{2}-a\left(\gamma(0)+\mu^{2}\right)-b \mu,
\end{aligned}
$$

which implies that

$$
b=\mu(1-a), \quad a=\frac{\gamma(h)+\mu^{2}-b \mu}{\gamma(0)+\mu^{2}} .
$$

Solving this system of equations we get $a=\gamma(h) / \gamma(0)=\rho(h)$ and $b=\mu(1-\rho(h))$ i.e. $\hat{X}_{n+h}=\rho(h) X_{n}+\mu(1-\rho(h))$.

Problem 2.4. a) Put $X_{t}=(-1)^{t} Z$ where Z is random variable with $\mathbb{E}[Z]=0$ and $\operatorname{Var}(Z)=1$. Then

$$
\gamma_{X}(t+h, t)=\operatorname{Cov}\left((-1)^{t+h} Z,(-1)^{t} Z\right)=(-1)^{2 t+h} \operatorname{Cov}(Z, Z)=(-1)^{h}=\cos (\pi h)
$$

b) Recall problem 1.4 b$)$ where $X_{t}=Z_{1} \cos (c t)+Z_{2} \sin (c t)$ implies that $\gamma_{X}(h)=$ $\cos (c h)$. If we let $Z_{1}, Z_{2}, Z_{3}, Z_{4}, W$ be independent random variables with zero mean and unit variance and put

$$
X_{t}=Z_{1} \cos \left(\frac{\pi}{2} t\right)+Z_{2} \sin \left(\frac{\pi}{2} t\right)+Z_{3} \cos \left(\frac{\pi}{4} t\right)+Z_{4} \sin \left(\frac{\pi}{4} t\right)+W
$$

Then we see that $\gamma_{X}(h)=\kappa(h)$.
c) Let $\left\{Z_{t}: t \in \mathbb{Z}\right\}$ be $\mathrm{WN}\left(0, \sigma^{2}\right)$ and put $X_{t}=Z_{t}+\theta Z_{t-1}$. Then $\mathbb{E}\left[X_{t}\right]=0$ and

$$
\begin{aligned}
& \gamma_{X}(t+h, t)=\operatorname{Cov}\left(Z_{t+h}+\theta Z_{t+h-1}, Z_{t}+\theta Z_{t-1}\right) \\
& \quad=\operatorname{Cov}\left(Z_{t+h}, Z_{t}\right)+\theta \operatorname{Cov}\left(Z_{t+h}, Z_{t-1}\right)+\theta \operatorname{Cov}\left(Z_{t+h-1}, Z_{t}\right) \\
& \quad+\theta^{2} \operatorname{Cov}\left(Z_{t+h-1}, Z_{t-1}\right) \\
& = \begin{cases}\sigma^{2}\left(1+\theta^{2}\right) & \text { if } h=0, \\
\sigma^{2} \theta & \text { if }|h|=1, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

If we let $\sigma^{2}=1 /\left(1+\theta^{2}\right)$ and choose θ such that $\sigma^{2} \theta=0.4$, then we get $\gamma_{X}(h)=\kappa(h)$. Hence, we choose θ so that $\theta /\left(1+\theta^{2}\right)=0.4$, which implies that $\theta=1 / 2$ or $\theta=2$.

Problem 2.8. Assume that there exists a stationary solution $\left\{X_{t}: t \in \mathbb{Z}\right\}$ to

$$
X_{t}=\phi X_{t-1}+Z_{t}, \quad t=0, \pm 1, \ldots
$$

GT exercises

Problem 1

Part a

- The best linear approximation $\tilde{X}=\hat{E}(X \mid Y)$, which can be expressed as

$$
\tilde{X}=\alpha_{0}+\sum_{t \in T} \alpha_{t} Y_{t}
$$

is characterized by the projection onto the space

$$
\left\{X * \in L^{2}: X^{*}=\alpha_{0}+\sum_{t \in T} \alpha_{t} Y_{t}\right\}
$$

The existence of α_{0} and $\alpha_{t}, t \in T$ is guaranteed by the projection theorem. These values can be found making use of the orthogonality of the residuals as stated in the projection. That is,

$$
\begin{aligned}
E\left(Y_{k}\left(X-\alpha_{0}-\sum_{t \in T} \alpha_{t} Y_{t}\right)\right) & =0 \quad \forall k \in T \\
E\left(\left(X-\alpha_{0}-\sum_{t \in T} \alpha_{t} Y_{t}\right)\right) & =0
\end{aligned}
$$

- As stated in definition 2.7.3 (Time Series: Theory and Methods), $\hat{X}=$ $E(X \mid Y)$ can be understood as the projection on the closed subspace of $L^{2}, M(Y)$, of all the random variables in L^{2} that can be written in the form $\phi(Y)$ with $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a Borel function. That is:

$$
E(X \mid Y)=E_{M(Y)} X=P_{M(Y)} X
$$

It can be proved that it accomplishes all the properties of a projection. Based on these properties we can say:

$$
X=P_{M(Y)} X+\left(X-P_{M(Y)} X\right)
$$

Which implies, $E(\hat{X}(X-\hat{X}))=0$ according to the projection theorem.

Part b

Given that X and Y are simple random variables defined on the probability space (Ω, \mathcal{F}, P), they can be expressed in the form:

$$
X=\sum_{i=1}^{n} a_{i} 1_{A_{i}}
$$

with 1 the indicator function and $A_{i} \in \mathcal{A}$ with $A_{i}=\left\{X=a_{i}\right\}$ (Similarly Y is defined). It can be proved that $P(X \mid Y=y)=Q_{y}(X)$ is a probability measure. Then,

$$
E(X \mid Y=y)=\sum_{i=1}^{n} a_{i} Q_{y}\left(X=a_{i}\right)
$$

Now, let $b_{i}=\phi\left(a_{i}\right)$. Then,

$$
\begin{aligned}
E(\phi(X) \mid Y=y) & =\sum_{i=1}^{n} b_{i} Q_{y}\left(X=a_{i}\right) \\
& =\sum_{i=1}^{n} b_{i} P\left(X=a_{i} \mid Y=y\right) \\
& =\sum_{i=1}^{n} b_{i} \frac{P\left(X=a_{i}, Y=y\right)}{P(Y=y)} \\
& =\sum_{i=1}^{n} b_{i} \frac{f_{X, Y}\left(a_{i}, y\right)}{f_{Y}(y)} \\
& =\sum_{i=1}^{n} b_{i} f_{X \mid Y}\left(a_{i} \mid y\right) \\
& =\sum_{i=1}^{n} \phi\left(a_{i}\right) f_{X \mid Y}\left(a_{i} \mid y\right)
\end{aligned}
$$

Thus,

$$
E(\phi(X) \mid Y=y)=\sum_{x} \phi(x) f_{X \mid Y}(x \mid y)
$$

