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Examination Aids (code C): Simple calculator (HP30S or Citizen SR-270X)
Rottman: Matematisk formelsamling

Sensur: 25th June 2012

Give reasons for all answers, ensuring that it is clear how the answer has been reached. Each of the 12
parts (1,2a,2b,3,4,5a,5b,6,7a,7b,8a,8b) has the same weight.

Problem 1 Solve 𝑤 = (−1 + 𝑖√3)/2.

Find all solutions of the equation 𝑧 + 𝑧 + 1 = 0 and draw them in the complex plane. Write
the solutions in the form 𝑥 + 𝑖𝑦.

Solution:

Write (−1 + 𝑖√3)/2 in polar form: its length is (−
/) + (√3/2) = 



+ 


= 1 and its

argument is tan−(−√3) = 2𝜋/3. Thus (−1 + 𝑖√3)/2 = 𝑒𝑖𝜋/. Its square roots are thus ±𝑒𝑖𝜋/.
In cartesian form, these are ±(1 + 𝑖√3)/2

To solve 𝑧+𝑧+1 = 0we start by noticing that this is a quadratic in 𝑧. Using the quadratic
formula, we find that:

𝑧 =
−1 ± √1 − 4 · 1 · 1

2
= (−1 ± 𝑖√3)/2.

From the first part, we get the two solutions ±(1 + 𝑖√3)/2. The quickest way to find the
other two is to notice that 𝑧 = 𝑧, whence the other two solutions are ±(1 − 𝑖√3)/2.
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(1 + 𝑖√3)/2

−(1 + 𝑖√3)/2 (1 − 𝑖√3)/2

(−1 + 𝑖√3)/2

Problem 2

a) Find a particular solution of 𝑦″ − 4𝑦′ + 𝑦 = 𝑡𝑒𝑡 + 𝑡.
Solution:

The term 𝑡𝑒𝑡 looks the more difficult to achieve so we begin with that. Let us try
𝑦 = 𝑡𝑒𝑡:

𝑦″ − 4𝑦′ + 𝑦 = (2𝑒𝑡 + 𝑡𝑒𝑡) − 4(𝑒𝑡 + 𝑡𝑒𝑡) + 𝑡𝑒𝑡 = −2𝑡𝑒𝑡 − 2𝑒𝑡.
Hence 𝑦 = −/𝑡𝑒𝑡 produces the desired 𝑡𝑒𝑡 but also introduces a term of 𝑒𝑡. To correct
for that, we try 𝑦 = 𝑒𝑡:

𝑦″ − 4𝑦′ + 𝑦 = 𝑒𝑡 − 4𝑒𝑡 + 𝑒𝑡 = −2𝑒𝑡.

Thus 𝑦 = −/𝑡𝑒𝑡 + /𝑒𝑡 produces 𝑡𝑒𝑡.
To get the 𝑡, we try 𝑦 = 𝑡:

𝑦″ − 4𝑦′ + 𝑦 = 0 − 4 · 1 + 𝑡 = 𝑡 − 4.

To correct for the −4, we try 𝑦 = 4:

𝑦″ − 4𝑦′ + 𝑦 = 0 − 4 · 0 + 4 = 4.

Hence 𝑦 = 𝑡 + 4 produces 𝑡.
Thus a particular solution is:

−/𝑡𝑒𝑡 + /𝑒𝑡 + 𝑡 + 4.

Quick check:
𝑦″ ∶ −/𝑡𝑒𝑡 −𝑒𝑡 + /𝑒𝑡
−4𝑦′ ∶ 2𝑡𝑒𝑡 +2𝑒𝑡 − 2𝑒𝑡 −4
+𝑦 ∶ −/𝑡𝑒𝑡 +/𝑒𝑡 +𝑡 +4

𝑡𝑒𝑡 +𝑡



Page 3 of 9

b) Find the solution of 𝑦″ − 4𝑦′ + 𝑦 = 𝑡𝑒𝑡 + 𝑡, where 𝑦′(0) = 𝑦(0) = 0.

Solution:

We have a particular solution, what remains is to find the solution to the homogeneous
equation and to fit the resulting general solution to the initial conditions.

The solutions to the homogeneous equation will be of the form 𝐴𝑒𝛼𝑡 +𝐵𝑒𝛽𝑡 for some 𝛼, 𝛽 ∈
ℂ. These are the roots of the auxiliary equation 𝑠 − 4𝑠 + 1 = 0. Solving this via the
quadratic formula we obtain:

4 ± √16 − 4
2

= 2 ± √3.

Thus the general solution is:

𝐴𝑒(+√)𝑡 + 𝐵𝑒(−√)𝑡 − /𝑡𝑒𝑡 + /𝑒𝑡 + 𝑡 + 4.

We now fit this to the initial conditions: at 𝑡 = 0, the above evaluates to𝐴+𝐵+/+4, whence
𝐴+ 𝐵 = −/. Differentiating and evaluating, we obtain (2 + √3)𝐴 + (2 − √3)𝐵 − / + / + 1,
whence (2 + √3)𝐴 + (2 − √3)𝐵 = −1 or 𝐴 − 𝐵 = /√. Hence:

𝐴 =
16 − 9√3
4√3

, 𝐵 =
−16 − 9√3
4√3

and thus the solution is:

16 − 9√3
4√3

𝑒(+√)𝑡 +
−16 − 9√3
4√3

𝑒(−√)𝑡 − /𝑡𝑒𝑡 + /𝑒𝑡 + 𝑡 + 4.

Problem 3 Let 𝑎 be a real number. Find the general solution of 𝑦″ + 𝑎𝑦 = cos 𝑥.

Solution:

The solution of the homogeneous equation will depend on 𝑎. Let 𝜆 = √|𝑎|, then:

• 𝑎 < 0: 𝐴𝑒𝜆𝑥 + 𝐵𝑒−𝜆𝑥,
• 𝑎 = 0: 𝐴𝑥 + 𝐵,
• 𝑎 > 0: 𝐴cos(𝜆𝑥) + 𝐵 sin(𝜆𝑥)
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The particular solution will depend on whether or not 𝑎 = 1. If 𝑎 ≠ 1, then a particular
solution is 

𝑎−
cos(𝑥). If 𝑎 = 1 then cos(𝑥) is a solution of the homogeneous equation and

so we expect a solution of the form 𝐴𝑥 cos(𝑥) + 𝐵𝑥 sin(𝑥). Substituting in, we find that if
𝑦(𝑥) = 𝑥 cos(𝑥) then:

𝑦″ + 𝑦 = −𝑥 cos(𝑥) − sin(𝑥) − sin(𝑥) + 𝑥 cos(𝑥) = −2 sin(𝑥)
whilst if 𝑦(𝑥) = 𝑥 sin(𝑥) then:

𝑦″ + 𝑦 = −𝑥 sin(𝑥) + 2 cos(𝑥) + 𝑥 sin(𝑥) = 2 cos(𝑥)
hence the general solution is:

• 𝑎 < 0: 𝐴𝑒𝜆𝑥 + 𝐵𝑒−𝜆𝑥 + 
𝑎−
cos(𝑥),

• 𝑎 = 0: 𝐴𝑥 + 𝐵 − cos(𝑥),
• 𝑎 > 0, 𝑎 ≠ 1: 𝐴cos(𝜆𝑥) + 𝐵 sin(𝜆𝑥) + 

𝑎−
cos(𝑥),

• 𝑎 = 1: 𝐴cos(𝑥) + 𝐵 sin(𝑥) + /𝑥 sin(𝑥)

Problem 4 Find the least squares solution of

−𝑦 + 𝑧 = 1
2𝑦 − 𝑧 = 0

𝑥 + 𝑦 + 3𝑧 = 0
−𝑥 + 3𝑦 + 𝑧 = 0

.

Solution:

This is equivalent to the following matrix equation:
⎡
⎢
⎢
⎢
⎣

0 −1 1
0 2 −1
1 1 3
−1 3 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎥
⎦

Let 𝐴 be the matrix and 𝑏 the target vector. For a least-squares solution, we solve 𝐴⊤𝐴𝑥 =
𝐴⊤𝑏 so we compute:

𝐴⊤𝐴 =
⎡
⎢
⎢
⎣

0 0 1 −1
−1 2 1 3
1 −1 3 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

0 −1 1
0 2 −1
1 1 3
−1 3 1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

2 −2 2
−2 15 3
2 3 12

⎤
⎥
⎥
⎦

𝐴⊤𝑏 =
⎡
⎢
⎢
⎣

0 0 1 −1
−1 2 1 3
1 −1 3 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
−1
1

⎤
⎥
⎥
⎦
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We solve the resulting linear system:

⎡
⎢
⎢
⎣

2 −2 2 0
−2 15 3 −1
2 3 12 1

⎤
⎥
⎥
⎦
↦
⎡
⎢
⎢
⎣

2 −2 2 0
0 13 5 −1
0 5 10 1

⎤
⎥
⎥
⎦

↦
⎡
⎢
⎢
⎣

2 −2 2 0
0 13 5 −1
0 0 105 18

⎤
⎥
⎥
⎦

↦
⎡
⎢
⎢
⎣

2 −2 2 0
0 13 5 −1
0 0 35 6

⎤
⎥
⎥
⎦
↦
⎡
⎢
⎢
⎣

2 −2 2 0
0 7 0 −1
0 0 35 6

⎤
⎥
⎥
⎦

↦
⎡
⎢
⎢
⎣

35 0 0 −11
0 7 0 −1
0 0 35 6

⎤
⎥
⎥
⎦

Whence the least-squares solution is:

⎡
⎢
⎢
⎢
⎣

0 −1 1
0 2 −1
1 1 3
−1 3 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

−/
−/
/

⎤
⎥
⎥
⎦
=
1
35

⎡
⎢
⎢
⎢
⎣

11
−16
2
2

⎤
⎥
⎥
⎥
⎦

Problem 5 Let 𝑇 ∶ ℝ → ℝ be defined by 𝑇
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠
=

⎡
⎢
⎢
⎢
⎣

2𝑥 + 𝑦 + 𝑧
−𝑥 + 3𝑦 + 𝑧
2𝑥 − 𝑧
𝑦 + 4𝑧

⎤
⎥
⎥
⎥
⎦

.

a) Find a matrix 𝐴 such that 𝑇
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠
= 𝐴

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦
.

Solution:
The matrix is:

𝐴 =

⎡
⎢
⎢
⎢
⎣

2 1 1
−1 3 1
2 0 −1
0 1 4

⎤
⎥
⎥
⎥
⎦

b) Find dimNull(𝐴) and a basis forCol(𝐴). Is 𝑇 one-to-one (injective)? Is 𝑇 onto (surjective)?
Solution:
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We row reduce the matrix as follows:

⎡
⎢
⎢
⎢
⎣

2 1 1
−1 3 1
2 0 −1
0 1 4

⎤
⎥
⎥
⎥
⎦

↦

⎡
⎢
⎢
⎢
⎣

1 −3 −1
2 1 1
2 0 −1
0 1 4

⎤
⎥
⎥
⎥
⎦

↦

⎡
⎢
⎢
⎢
⎣

1 −3 1
0 7 3
0 6 1
0 1 4

⎤
⎥
⎥
⎥
⎦

↦

⎡
⎢
⎢
⎢
⎣

1 −3 1
0 1 4
0 7 3
0 6 1

⎤
⎥
⎥
⎥
⎦

↦

⎡
⎢
⎢
⎢
⎣

1 −3 1
0 1 4
0 0 −23
0 0 −25

⎤
⎥
⎥
⎥
⎦

↦

⎡
⎢
⎢
⎢
⎣

1 −3 1
0 1 4
0 0 1
0 0 0

⎤
⎥
⎥
⎥
⎦

Hence dimNull(𝐴) = 0 and a basis for Col(𝐴) is the columns of 𝐴:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎣

2
−1
2
0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎣

1
3
0
1

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎣

1
1
−1
4

⎤
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

As dimNull(𝐴) = 0, 𝑇 is injective. As dimCol(𝐴) = 3, 𝑇 is not surjective.

Problem 6 Let 𝐴 be a 4 × 4 matrix. Let 𝐵 =

⎡
⎢
⎢
⎢
⎣

2 1 4 0
1 1 1 0
1 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

.

Assume that det(𝐴𝐵) = 4. What is det(𝐴)?

Solution:

As det(𝐴𝐵) = det(𝐴) det(𝐵), we have that det(𝐴) = 4/ det(𝐵). We compute det(𝐵) as:





2 1 4 0
1 1 1 0
1 0 1 0
0 0 0 1




=




0 1 2 0
0 1 0 0
1 0 1 0
0 0 0 1




=




0 0 2 0
0 1 0 0
1 0 1 0
0 0 0 1




= 2





0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




= −2





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




= −2.

Hence det(𝐴) = −2.
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Show that the equation 𝐴

⎡
⎢
⎢
⎢
⎣

𝑥
𝑥
𝑥
𝑥

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

has only the solution 𝑥 = 𝑥 = 𝑥 = 𝑥 = 0.

Solution:

As det(𝐴) ≠ 0, 𝐴 is an invertible matrix. Hence it is injective, and so the only solution of
𝐴𝑥 = 0 is 𝑥 = 0.

Problem 7

a) Find all the eigenvalues of 𝐴 =
⎡
⎢
⎢
⎣

2 0 0
0 1 2
0 −1 4

⎤
⎥
⎥
⎦
.

Solution:

There is an obvious eigenvalue, 2, with eigenvector
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦
. Another eigenvalue can be

seen from the fact that the “row sums” of the lower two rows are both 3, hence
⎡
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎦

is an eigenvector with eigenvalue 3. To find the last eigenvalue, we can use the fact
that the sum of the roots of the characteristic polynomial (with multiplicity) is the
same as the sum of the diagonal terms, which is 7, whence the last root is again 2.
Hence the eigenvalues are 2 and 3.
In the more traditional fashion, we could compute these as follows. We start by
computing the characteristic polynomial:

det(𝜆𝐼 − 𝐴) = 
𝜆 − 2 0 0
0 𝜆 − 1 −2
0 1 𝜆 − 4


 = (𝜆 − 2)((𝜆 − 1)(𝜆 − 4) + 2) = (𝜆 − 2)(𝜆

 − 5𝜆 + 6).

This has an obvious root, 𝜆 = 2. The other roots are roots of the quadratic factor,
which we can either solve using the quadratic formula or simply see that the roots
are 2 and 3. Hence the roots of the characteristic polynomial are 2, 2, 3, whence the
eigenvalues are 2 and 3.
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b) Find a basis for each eigenspace of 𝐴. Is 𝐴 diagonalisable?
Solution:

As remarked above, two eigenvectors are
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

and
⎡
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎦

for eigenvalues 2 and 3 respec-

tively. As the repeated root was 2, if there is a third eigenvector (linearly indepen-
dent of these two) it will have to have eigenvalue 2. Thus we compute the null space
of 2𝐼 − 𝐴:

⎡
⎢
⎢
⎣

0 0 0
0 1 −2
0 1 −2

⎤
⎥
⎥
⎦
↦
⎡
⎢
⎢
⎣

0 1 −2
0 0 0
0 0 0

⎤
⎥
⎥
⎦
⟹

⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
2
1

⎤
⎥
⎥
⎦

Thus a basis for the eigenspace corresponding to eigenvalue 2 is:

⎧⎪⎪⎨⎪⎪⎩

⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
2
1

⎤
⎥
⎥
⎦

⎫⎪⎪⎬⎪⎪⎭
and for the eigenspace corresponding to eigenvalue 3 is:

⎧⎪⎪⎨⎪⎪⎩

⎡
⎢
⎢
⎣

0
1
1

⎤
⎥
⎥
⎦

⎫⎪⎪⎬⎪⎪⎭

The resulting three vectors are linearly independent, whence form a basis for ℝ.
Thus there is a basis ofℝ consisting of eigenvectors of𝐴 and so𝐴 is diagonalisable.

Problem 8 Let 𝐴 = 
−2 −5
5 −2 .

a) Find the complex eigenvalues of 𝐴 and the corresponding eigenvectors in ℂ.
Solution:

We compute det(𝜆𝐼 − 𝐴):

𝜆 + 2 5
−5 𝜆 + 2 = (𝜆 + 2)

 + 25 = 𝜆 + 4𝜆 + 29.

Using the quadratic formula, we find the roots are given by:

−4 ± √16 − 4 · 29
2

= −2 ± √−25 = −2 ± 5𝑖.
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To find the eigenvectors, we find the corresponding null spaces. Starting with−2+5𝑖,
we compute:


5𝑖 5
−5 5𝑖 ↦ 

𝑖 1
−1 𝑖 ↦ 

𝑖 1
0 0 ⟹ 

𝑖
1 .

As 𝐴 has only real values, its eigenvalues and eigenvectors come in conjugate pairs

so the other eigenvector (with eigenvalue −2 − 5𝑖) is 
−𝑖
1 .

b) Find the solution of the system of differential equations �⃗�′(𝑡) = 𝐴�⃗�(𝑡) satisfying �⃗�(0) = 
1
0 .

The answer should be written in the form �⃗�(𝑡) = 𝑒𝜆𝑡
𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡)
𝑐 cos(𝜔𝑡) + 𝑑 sin(𝜔𝑡) .

Solution:
The general solution is:

𝑦(𝑡) = 𝛼𝑒𝜆𝑡
𝑖
1 + 𝛽𝑒

𝜆𝑡
−𝑖
1 

with 𝛼, 𝛽 ∈ ℂ, 𝜆 = −2 + 5𝑖, and 𝜆 = −2 − 5𝑖.
The condition at 𝑡 = 0 is that:

𝛼
𝑖
1 + 𝛽

−𝑖
1  = 

1
0

whence 𝑖(𝛼 − 𝛽) = 1 and 𝛼 + 𝛽 = 0. Hence 𝛽 = 𝑖/ and 𝛼 = −𝑖/. Thus the solution is:

𝑦(𝑡) = −/𝑖𝑒𝜆𝑡
𝑖
1 +

/𝑖𝑒𝜆𝑡
−𝑖
1 

= 𝑒−𝑡
/𝑒𝑖𝑡 + /𝑒−𝑖𝑡
−𝑖/𝑒𝑖𝑡 + /𝑖𝑒−𝑖𝑡

= 𝑒−𝑡
cos(5𝑡)
sin(5𝑡)


