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Let us consider the initial value problem (IVP)

(1) Ẏ (s) = A(s)Y (s), Y (0) = Y0,

where A(s) is a matrix (operator) valued continuous function. For the moment, let us simplify the

problem by assuming scalar functions, i.e. we ignore commutativity issues. Then the solution of the

IVP (1) in terms of the exponential map, i.e. Y (s) = exp(
∫ s

0 A(x)dx)Y0. Expanding the exponential

and making use of integration by parts immediately yields:

(2) exp
(∫ s

0
A(x)dx

)
= 1 +

∫ s

0
A(x1)dx1 +

∫ s

0
A(x1)

∫ x1

0
A(x2)dx2dx1 + · · · .

The righthand side is known as Dyson–Chen series (or time-ordered exponential) and corresponds to

the integral equation associated to (1):

Y (s) = Y0 +

∫ s

0
A(u)Y (u)du.

The Dyson–Chen series, i.e., righthand side of (2), holds when A(t) is a n×n matrix valued continuous

function. However, the exponential solution (on the lefthand side) changes drastically due to the non-

commutative character of the problem.

Wilhelm Magnus proposed in 1954 [8] a differential equation for the matrix valued function Ω(s;A)

Ω̇(s;A) = A(s) +
∑
n>0

Bn
n!
ad

(n)∫ s
0 Ω̇(x;A)dx

(A(s)) =
adΩ(s;A)

exp(adΩ(s;A))− 1
(A(s)),

such that the solution of (1) is given by X(s) = exp(
∫ s

0 Ω̇(x;A)dx)Y0, Ω(0;A) = 0. Here, the Bn are

the Bernoulli numbers:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, . . . and B2k+1 = 0 for k ≥ 1,

and the usual notation for the n-fold iterated Lie bracket is used, i.e., ad
(n)
U (W ) := ad

(n−1)
U ([U,W ]),

ad
(0)
U (W ) = W . Since its appearance, Magnus’ seminal paper triggered much progress in both math-

ematics and physics. See e.g. [2, 3, 6, 9, 13]. Let us write down the first few terms of what is called

Magnus expansion, Ω(s;λA) =
∑

n>0 Ωn(s;A)λn:

Ω̇(s;λA) = λA(s)− λ2 1

2

[ ∫ s

0
A(x)dx,A(s)

]
(3)

+ λ3 1

4

[ ∫ s

0

[ ∫ y

0
A(x)dx,A(y)

]
dy,A(s)

]
+ λ3 1

12

[ ∫ s

0
A(x)dx,

[ ∫ s

0
A(y)dy,A(s)

]]
+ · · · ,(4)
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where we introduced a dummy parameter λ. Understanding this Lie series in full depth is a challenge.

Let π : P → Q be a (left) principal fiber bundle with structure group G and consider a G-connection

on P whose connection one-form is given byA : TP → g, where g is the Lie algebra ofG. The holonomy

of A is then defined as follows. For any closed loop t 7→ σ(t) ∈ Q in the base space Q, with σ(0) = σ(1),

we consider the horizontal lift t 7→ τ(t) ∈ P to the total space P . It can be shown that τ(t) is the

unique curve satisfying, for all t,

(5) π(τ(t)) = σ(t) and A(τ̇(t)) = 0,

with initial condition τ(0) = p, where p is a fixed point in P . In other words, τ projects down onto

σ under π, and τ̇ is in the kernel of A (i.e. is a horizontal vector). We then define the holonomy

of the curve τ as the unique group element gτ ∈ G such that τ(1) = gτ · τ(0). See [7, 11] for some

background.

Locally, we may assume that the fiber bundle is trivial, so that P is diffeomorphic to the product

Q × G, and the connection is given by A = g−1dg + Ai(x)dxi, where the (xi) are locally defined

coordinates on Q. In this local trivialization, the curve τ is given by τ(t) = (σ(t), g(t)), where t 7→ g(t)

is a curve in G satisfying

(6)
dg

dt
= −gAi(x(t))ẋi(t),

where the xi(t) are the components of σ(t) in the coordinate frame on Q. This equation can be solved

using the Magnus expansion, and the holonomy associated to the curve τ is then given by gτ = g(1).

Using the condition that the loop σ is closed, σ(0) = σ(1), as well as integrating by parts inside the

expansion (3), the Magnus expansion can be reformulated, and in a local trivialization the holonomy

is then given by

(7) gτ = exp Ωτ , where Ωτ = −1

2
Fij

∫
σ
dxidxj +

1

3
∇iFjk

∫
σ
dxidxjdxk + · · · ,

where the Fij are the local component functions of the curvature of A, ∇iFjk is its covariant derivative,

and the integrals are the moments of the curve t 7→ σ(t). This formula was derived by Burdick and

Radford in [4]. However, it turns out that its precise description remains somewhat unclear. The

idea is to use basic as well as more recent insights in the combinatorial and algebraic structure un-

derlying the classical Magnus expansion [1, 5, 9, 12, 13] to obtain a more transparent description of (7).

THE AIM of this project is to study the Magnus expansion in the context of gauge

theory [10]. This relies on the fact that the holonomy of a connection on a principal bundle

can be written by means of a Magnus-like expression in a local chart. The additional

structure present in the case of gauge theory (connections, curvatures, and covariant

derivatives) then allows to rewrite this formula in a compact form (see (7)) involving

only the curvature and its covariant derivatives.

Prerequisites: interest in learning about the fascinating interplay between modern algebra, combina-

torics and differential geometry, with a view toward applications in control theory. The key references

are [2, 4, 10].
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