Norwegian University of Science and Technology Department of Mathematical Sciences

Exam in TMA4110 Calculus 3, June 2013 Solution

Problem 1 Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}0\\4\\2\end{bmatrix}, \ T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\2\\1\end{bmatrix}, \ T\left(\begin{bmatrix}1\\1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\6\\3\end{bmatrix}.$$

a) Find the standard matrix A for the linear transformation T.

Solution. The standard matrix is $A = \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} \end{bmatrix}$. The first two columns of A are given. To find $T \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$, we use that T is linear,

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\1\\1\\1\end{bmatrix}\right) - T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) - T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right)$$
$$= \begin{bmatrix}2\\6\\3\end{bmatrix} - \begin{bmatrix}0\\4\\2\end{bmatrix} - \begin{bmatrix}0\\2\\1\end{bmatrix} = \begin{bmatrix}2\\0\\0\end{bmatrix}.$$

So
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 4 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$
.

b) Find a basis for the null space, Nul(A), of A, and a basis for the column space, Col(A), of A.

Page 1 of 9

Solution. By Gauss elimination, we see that A is row-equivalent to $B = \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Therefore, the equation $A\mathbf{x} = \mathbf{0}$ has solution $x = t \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$, and $\left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \right\}$ is a basis for Nul(A). The pivots of B are in the first and third column, so the first and third column of A, that is $\left\{ \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right\}$, is a basis for Col(A).

Problem 2

a) Find the solution of the differential equation y'' - y' = 0 which satisfies y(0) = 1 and y'(0) = -1.

Solution. The characteristic polynomial of the differential equation is $\lambda^2 - \lambda$, with roots $\lambda_1 = 0, \lambda_2 = 1$, so the general solution of the differential equation is

$$y(t) = c_1 e^{0 \cdot t} + c_2 e^{1 \cdot t} = c_1 + c_2 e^t$$

Enforcing the conditions y(0) = 1 and y'(0) = -1 gives the linear equations

$$c_1 + c_2 = 1$$
$$c_2 = -1$$

Which are solved by $c_1 = 2, c_2 = -1$. The solution is therefore $y(t) = 2 - e^t$.

b) Find the general solution to the differential equation $y'' - y' = e^t \sin t$.

Solution. We must find find a particular solution. There are several ways to proceed here. Undetermined coefficients, variation of parameters, or even setting x = y' and solving the first order equation $x' - x = e^t \sin t$ by using an integrating factor, all lead to a solution. Here we consider the complex differential equation

$$z'' - z' = e^{(1+i)t}.$$
 (1)

(Notice that $\operatorname{Im}(e^{(1+i)t}) = e^t \sin t$.) If z_p is a solution of (1), then $y_p = \operatorname{Im}(z_p)$ is a solution of the original equation $y'' - y' = e^t \sin t$. We use the method of undetermined coefficients and look for a solution $z_p = ce^{(1+i)t}$ of (1). Now, $z'_p = (1+i)ce^{(1+i)t}, z''_p = (1+i)^2ce^{(1+i)t} = 2ice^{(1+i)t}$, and inserting into (1) gives

$$2ice^{(1+i)t} - (1+i)ce^{(1+i)t} = e^{(1+i)t},$$
$$(-1+i)ce^{(1+i)t} = e^{(1+i)t}.$$

For this equality to hold for all t, we need to have $c = \frac{1}{-1+i} = -\frac{1}{2}(1+i)$. Therefore $z_p = -\frac{1}{2}(1+i)e^{(1+i)t}$ solves (1), and

$$y_p = \operatorname{Im}(z_p) = -\frac{1}{2} \operatorname{Im} \left((1+i)e^{(1+i)t} \right) = -\frac{1}{2} \left(\operatorname{Re}(1+i) \operatorname{Im}(e^{(1+i)t}) + \operatorname{Im}(1+i) \operatorname{Re}(e^{(1+i)t}) \right)$$
$$= -\frac{1}{2} \left(1 \cdot e^t \sin t + 1 \cdot e^t \cos t \right)$$
$$= -\frac{1}{2} e^t (\sin t + \cos t),$$

is a partial solution to $y'' - y' = e^t \sin t$.

Alternatively, we can use variation of parameters. We then look for a solution of the form $y_p(t) = v_1(t) + v_2(t)e^t$ (because $y_h(t) = c_1 + c_2e^t$ is the general solution of the homogenous equation y'' - y' = 0). We then have $y'_p(t) = v'_1(t) + v'_2(t)e^t + v_2(t)e^t$. Assume that $v'_1(t) + v'_2(t)e^t = 0$. Then $y'_p(t) = v_2(t)e^t$, $y''_p(t) = v_2(t)e^t + v'_2(t)e^t$ and $y''_p(t) - y'_p(t) = v'_2(t)e^t$. The solution of the system

$$v_1'(t) + v_2'(t)e^t = 0$$
$$v_2'(t)e^t = \sin(t)e^t$$

is $v'_2(t) = \sin(t)$, $v'_1(t) = -\sin(t)e^t$, so if we let $v_2(t) = \int \sin(t)dt = -\cos(t)$ and $v_1(t) = \int -\sin(t)e^t dt = \frac{1}{2}(\cos(t)e^t - \sin(t)e^t)$ (use partial integration or see Rottmann page 144), then $y_p(t) = v_1(t) + v_2(t)e^t = -\frac{1}{2}(\cos(t)e^t + \sin(t)e^t)$ is a partial solution. We know from **a**) that $y_h(t) = c_1 + c_2e^t$ is the general solution of the homogenous equation y'' - y' = 0, so it follows that $y(t) = y_h(t) + y_p(t) = c_1 + c_2e^t - \frac{1}{2}e^t(\sin t + \cos t)$ is the general solution of $y'' - y' = e^t \sin t$.

Problem 3 Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$.

a) Find an orthogonal basis for the plane in \mathbb{R}^3 spanned by \mathbf{u}_1 and \mathbf{u}_2 . Solution. We use the Gram–Schmidt procedure

$$\mathbf{w}_1 = \mathbf{u}_1,$$
$$\mathbf{w}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 = \mathbf{u}_2 - \frac{2}{2} \mathbf{w}_1.$$
Inserting \mathbf{u}_1 and \mathbf{u}_2 gives $\mathbf{w}_2 = \begin{bmatrix} 2\\0\\1 \end{bmatrix} - \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$. $\{\mathbf{w}_1, \mathbf{w}_2\}$ is an orthogonal basis for the plane spanned by \mathbf{u}_1 and \mathbf{u}_2 .

b) Find the distance from \mathbf{v} to the plane in \mathbb{R}^3 spanned by \mathbf{u}_1 and \mathbf{u}_2 .

Solution. We use the orthogonal basis from a) to calculate the orthogonal projection of v onto $\text{Span}\{\mathbf{u}_1, \mathbf{u}_2\} = \text{Span}\{\mathbf{w}_1, \mathbf{w}_2\}.$

$$\hat{\mathbf{v}} = \frac{\mathbf{v} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{v} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 = \frac{2}{2} \mathbf{w}_1 + \frac{6}{3} \mathbf{w}_2 = \mathbf{w}_1 + 2\mathbf{w}_2 = \begin{bmatrix} 3\\-1\\2 \end{bmatrix}$$

The distance from \mathbf{v} to $\text{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$ is given by

$$\|v - \hat{v}\| = \left\| \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right\| = \sqrt{6}.$$

Problem 4 A particle moving in a plane under the influence of a force has the equation of motion

$$\mathbf{x}'(t) = \begin{bmatrix} 0 & -5\\ 1 & -2 \end{bmatrix} \mathbf{x}(t),$$

where $\mathbf{x}(t)$ denotes the position of the particle at the time t. Find $\mathbf{x}(t)$ assuming that $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The answer should be given in the form $\mathbf{x}(t) = e^{at} \begin{bmatrix} c_1 \cos(bt) + c_2 \sin(bt) \\ c_3 \cos(bt) + c_4 \sin(bt) \end{bmatrix}$ where a, b, c_1, c_2, c_3 and c_4 are real numbers.

Solution. Let $A = \begin{bmatrix} 0 & -5 \\ 1 & -2 \end{bmatrix}$. The characteristic polynomial of A is $\lambda^2 + 2\lambda + 5$, with complex roots $\lambda = -1 + 2i$ and $\bar{\lambda} = -1 - 2i$. From the matrix $A - \lambda I = \begin{bmatrix} 1 - 2i & -5 \\ 1 & -1 - 2i \end{bmatrix}$, we can see that the eigenvector corresponding to λ is $\mathbf{v} = \begin{bmatrix} 1 + 2i \\ 1 \end{bmatrix}$. The eigenvector corresponding to $\bar{\lambda}$ is therefore simply $\bar{\mathbf{v}} = \begin{bmatrix} 1 - 2i \\ 1 \end{bmatrix}$. The general complex solution of $\mathbf{x}'(t) = A\mathbf{x}(t)$ is given in terms of the eigenvectors as $\mathbf{x}(t) = c_1 e^{\lambda t} \mathbf{v} + c_2 e^{\bar{\lambda} t} \bar{\mathbf{v}}.$

where c_1 and c_2 are complex numbers. To obtain the solution satisfying the initial condition $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we get two equations for c_1, c_2 .

$$\mathbf{x}(0) = c_1 \mathbf{v} + c_2 \bar{\mathbf{v}}$$
$$\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + 2(c_1 - c_2)i\\c_1 + c_2 \end{bmatrix}$$

Subtracting the second equation from the first, we see that $c_1 = c_2$, and then the second equation gives that $c_1 = c_2 = \frac{1}{2}$. The solution of the initial value problem is therefore

$$\mathbf{x}(t) = \frac{1}{2}e^{\lambda t}\mathbf{v} + \frac{1}{2}e^{\bar{\lambda}t}\bar{\mathbf{v}}.$$

To get this expression on the form required, we could expand this expression using $e^{a+bi} = e^a(\cos b + i \sin b)$. A quicker way is to recognise the expression on the right hand side above as $\frac{1}{2}(\mathbf{w}(t) + \bar{\mathbf{w}}(t)) = \operatorname{Re}(\mathbf{w}(t))$ with $\mathbf{w}(t) = e^{\lambda t}\mathbf{v}$. So

$$\begin{aligned} \mathbf{x}(t) &= \operatorname{Re}\left(e^{\lambda t}\mathbf{v}\right) \\ &= \operatorname{Re}\left(e^{(-1+2i)t} \begin{bmatrix} 1+2i\\1 \end{bmatrix}\right) \\ &= e^{-t} \operatorname{Re}\left(\begin{bmatrix} e^{2it}(1+2i)\\e^{2it} \end{bmatrix}\right) \\ &= e^{-t} \operatorname{Re}\left(\begin{bmatrix} (\cos(2t)+i\sin(2t))(1+2i)\\\cos(2t)+i\sin(2t) \end{bmatrix}\right) \\ &= e^{-t} \operatorname{Re}\left(\begin{bmatrix} \cos(2t)-2\sin(2t)+i(2\cos(2t)+\sin(2t))\\\cos(2t)+i\sin(2t) \end{bmatrix}\right) \\ &= e^{-t} \begin{bmatrix} \cos(2t)-2\sin(2t)\\\cos(2t) \end{bmatrix} \end{aligned}$$

Problem 5 You are given that

$$\det\left(\begin{bmatrix}a & b & c\\ p & q & r\\ x & y & z\end{bmatrix}\right) = 2.$$

Use this information to compute the determinant of the matrix

$$\begin{bmatrix} x & y & z \\ p & q & r \\ 5p - 2a & 5q - 2b & 5r - 2c \end{bmatrix}.$$

Give reasons for your answer.

Solution. By the properties of determinants and elementary row operations

$$\det\left(\begin{bmatrix}x & y & z\\p & q & r\\5p-2a & 5q-2b & 5r-2c\end{bmatrix}\right) = -\det\left(\begin{bmatrix}5p-2a & 5q-2b & 5r-2c\\p & q & r\\x & y & z\end{bmatrix}\right),$$
$$= -\det\left(\begin{bmatrix}-2a & -2b & -2c\\p & q & r\\x & y & z\end{bmatrix}\right),$$
$$= -(-2)\det\left(\begin{bmatrix}a & b & c\\p & q & r\\x & y & z\end{bmatrix}\right),$$
$$= 2 \cdot 2 = 4.$$

Problem 6 You do not have to give reasons for your answers for this problem.

- a) For each of the following 4 complex numbers, determine whether it lies in the first quadrant of the complex plane (i.e., both its real part and its imaginary part are non-negative) or not.
 - √3 i. Not in first quadrant.
 ⁻²⁺ⁱ/_{2+3i}. Not in first quadrant. The expression is equal to -¹/₁₃ + ⁸/₁₃i.
 e^{-2+7πi}. Not in first quadrant. e^{-2+7πi} = e⁻²e^{7πi} = e⁻²e^{πi} = -e².
 z², where |z| = 2 and Arg(z) = ^π/₃. Not in first quadrant. arg(z²) = 2 · Arg(z) = ^{2π}/₃ > ^π/₂
- b) Let A be an $n \times n$ matrix, B an $m \times n$ matrix, and C an $n \times m$ matrix, where $n \neq m$. For each of the following 4 expressions, determine whether it is well defined or not.
 - AB^T.
 Defined.
 BB^T.

Defined.

3. CB + 2A. **Defined.**

- 4. $B^2 A^2$. Not defined. B^2 is not defined.
- c) Let A and D be $n \times n$ matrices and let **b** be a nonzero vector in \mathbb{R}^n . For each of the following 4 statements, determine whether it is true or not.
 - 1. If the system $A\mathbf{x} = \mathbf{b}$ has more than one solution, then the system $A\mathbf{x} = 0$ also has more than one solution. **True.** If \mathbf{x}_1 and \mathbf{x}_2 both solves $A\mathbf{x} = \mathbf{b}$, then $A(\mathbf{x}_1 - \mathbf{x}_2) = A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b} = \mathbf{0}$.
 - 2. If A^T is non-invertible, then A is non-invertible. **True.** A^T non-invertible \Leftrightarrow rank $(A^T) < n \Leftrightarrow$ rank $(A) < n \Leftrightarrow A$ non-invertible.
 - 3. If AD = I, then DA = I. **True.** A and D are square, so if AD = I then $D = A^{-1}$.
 - 4. If A has orthonormal columns, then A is invertible. **True.** If A has orthonormal columns, then $A^T A = I$, so $A^T = A^{-1}$.
- d) For each of the following 4 statements, determine whether it is true or not.

1. The two vectors
$$\begin{bmatrix} 3\\2\\-5\\0 \end{bmatrix}$$
 and $\begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix}$ are orthogonal.

Not true

2. If $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{z} = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$, then \mathbf{z} belongs to the orthogonal complement of Span{ \mathbf{x}, \mathbf{y} }.

True. \mathbf{z} is orthogonal to both \mathbf{x} and \mathbf{y} , and thus to all of Span $\{\mathbf{x}, \mathbf{y}\}$.

- 3. An $m \times n$ matrix *B* has orthonormal columns if and only if $BB^T = I$. Not true. (*B* has orthonormal columns if and only if $B^TB = I$.) $BB^T = I$ is equivalent to *A* having orthonormal *rows*, but nonsquare matrices may have orthonormal rows but not orthonormal columns and vice versa.
- 4. If **x** is orthogonal to **y** and **z**, then **x** is orthogonal to $\mathbf{y} \mathbf{z}$. **True.** $\mathbf{x}^T(\mathbf{y} - \mathbf{z}) = \mathbf{x}^T \mathbf{y} - \mathbf{x}^T \mathbf{z} = 0$
- e) Let A be an $n \times n$ matrix. For each of the following 4 statements, determine whether it is true or not.
 - 1. If A is orthogonally diagonalizable, then A is symmetric. **True.** $A = PDP^T \Leftrightarrow A^T = (P^T)^T D^T P^T = PDP^T = A.$

- 2. If A is an orthogonal matrix, then A is symmetric. Not true. Counterexample: $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is orthogonal, but not symmetric.
- 3. If $\mathbf{x}^T A \mathbf{x} > 0$ for every $\mathbf{x} \neq \mathbf{0}$, then the quadratic form $\mathbf{x}^T A \mathbf{x}$ is positive definite. **True.** By definition.
- 4. Every quadratic form can by a change of variable be transformed into a quadratic form with no cross-product term. **True.** Every quadratic form can be written $\mathbf{x}^T A \mathbf{x}$ with A symmetric. When A is symmetric, it is also orthogonally diagonalizable, $A = PDP^T$, so the change of variables defined by $\mathbf{x} = P\mathbf{y}$ gives $\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D\mathbf{y}$.
- f) Let **u** and **v** be nonzero vectors in \mathbb{R}^n , and let r be a scalar. For each of the following 4 statements, determine whether it is true or not.
 - 1. $||r\mathbf{v}|| = r||\mathbf{v}||$, unless r = 0. Not true. Does not hold for r < 0..
 - 2. If **u** and **v** are orthogonal, then $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. **True.** If $a\mathbf{u} + b\mathbf{v} = 0$, then $\mathbf{u}^T(a\mathbf{u} + b\mathbf{v}) = a\mathbf{u}^T\mathbf{u} + b\mathbf{u}^T\mathbf{v} = a||u||^2 = 0$, so a = 0. Similarly, $\mathbf{v}^T(a\mathbf{u} + b\mathbf{v}) = 0$ gives b = 0.
 - 3. If $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal. **True.** In general, $\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v})^T (\mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^2 + 2\mathbf{u}^T \mathbf{v} + \|\mathbf{v}\|^2$ holds.
 - 4. If $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal. **True.** This is the same as 3 where $-\mathbf{v}$ is substituted for \mathbf{v} .
- g) For each of the following 4 statements, determine whether it is true or not.
 - If A is a matrix, then rank(A) = dim(Nul(A)).
 Not true. By the definition of rank, rank(A) = dim(Row(A)) = dim(Col(A)), dim(Nul(A)) is usually different.
 - A 5 × 10 matrix can have a 2-dimensional null space.
 Not true. A 5 × 10 matrix has maximal rank 5. The rank theorem tells us that the rank of the matrix plus the dimension of the null space for a 5 × 10 matrix is equal to 10. Therefore the dimension of the null space is at least 5.
 - 3. Row operations on a matrix can change its null space. Not true. This is a basic property of row operations.
 - 4. If the matrices A and B have the same reduced echelon form, then Row(A) = Row(B).
 True. The row space of a matrix is spanned by the nonzero rows of its reduced

echelon form.

- h) For each of the following 4 statements, determine whether it is true or not.
 - 1. The polynomials $p_1(t) = 1 + t^2$ and $p_2(t) = 1 t^2$ are linearly independent. **True.** $p_2(t)/p_1(t)$ is defined for all t, but not constant.
 - If A is a 3 × 4 matrix, then the mapping x → Ax is a linear transformation from R³ to R⁴.
 Not true. The mapping is a linear transformation from R⁴ to R³.
 - 3. If a linear transformation T : ℝ⁴ → ℝ⁴ is onto ℝ⁴ (or is surjective), then T cannot be one-to-one (injective).
 Not true. A linear transformation T : ℝ⁴ → ℝ⁴ which is surjective is in fact invertible, and therefore also injective.
 - 4. A linear transformation $S : \mathbb{R}^5 \to \mathbb{R}^4$ cannot be one-to-one (injective). **True.** The null space of the transformation has to be at least one-dimensional, so $S(\mathbf{x}) = \mathbf{0}$ has infinitely many solutions.