Exam in TMA4110 Calculus 3, June 2013
 Solution

Problem 1 Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
6 \\
3
\end{array}\right] .
$$

a) Find the standard matrix A for the linear transformation T.

Solution. The standard matrix is $A=\left[T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right) T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right) T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)\right]$. The first two columns of A are given. To find $T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)$, we use that T is linear,

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
2 \\
6 \\
3
\end{array}\right]-\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

So $A=\left[\begin{array}{lll}0 & 0 & 2 \\ 4 & 2 & 0 \\ 2 & 1 & 0\end{array}\right]$.
b) Find a basis for the null space, $\operatorname{Nul}(A)$, of A, and a basis for the column space, $\operatorname{Col}(A)$, of A.

Solution. By Gauss elimination, we see that A is row-equivalent to $B=\left[\begin{array}{ccc}1 & 1 / 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Therefore, the equation $A \mathbf{x}=\mathbf{0}$ has solution $x=t\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$, and $\left\{\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]\right\}$ is a basis for $\operatorname{Nul}(A)$. The pivots of B are in the first and third column, so the first and third column of A, that is $\left\{\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\right\}$, is a basis for $\operatorname{Col}(A)$.

Problem 2

a) Find the solution of the differential equation $y^{\prime \prime}-y^{\prime}=0$ which satisfies $y(0)=1$ and $y^{\prime}(0)=-1$.
Solution. The characteristic polynomial of the differential equation is $\lambda^{2}-\lambda$, with roots $\lambda_{1}=0, \lambda_{2}=1$, so the general solution of the differential equation is

$$
y(t)=c_{1} e^{0 \cdot t}+c_{2} e^{1 \cdot t}=c_{1}+c_{2} e^{t}
$$

Enforcing the conditions $y(0)=1$ and $y^{\prime}(0)=-1$ gives the linear equations

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
c_{2} & =-1
\end{aligned}
$$

Which are solved by $c_{1}=2, c_{2}=-1$. The solution is therefore $y(t)=2-e^{t}$.
b) Find the general solution to the differential equation $y^{\prime \prime}-y^{\prime}=e^{t} \sin t$.

Solution. We must find find a particular solution. There are several ways to proceed here. Undetermined coefficients, variation of parameters, or even setting $x=y^{\prime}$ and solving the first order equation $x^{\prime}-x=e^{t} \sin t$ by using an integrating factor, all lead to a solution. Here we consider the complex differential equation

$$
\begin{equation*}
z^{\prime \prime}-z^{\prime}=e^{(1+i) t} \tag{1}
\end{equation*}
$$

(Notice that $\operatorname{Im}\left(e^{(1+i) t}\right)=e^{t} \sin t$.) If z_{p} is a solution of (1), then $y_{p}=\operatorname{Im}\left(z_{p}\right)$ is a solution of the original equation $y^{\prime \prime}-y^{\prime}=e^{t} \sin t$. We use the method of undetermined coefficients and look for a solution $z_{p}=c e^{(1+i) t}$ of (1). Now, $z_{p}^{\prime}=(1+i) c e^{(1+i) t}, z_{p}^{\prime \prime}=$ $(1+i)^{2} c e^{(1+i) t}=2 i c e^{(1+i) t}$, and inserting into (1) gives

$$
\begin{aligned}
2 i c e^{(1+i) t}-(1+i) c e^{(1+i) t} & =e^{(1+i) t} \\
(-1+i) c e^{(1+i) t} & =e^{(1+i) t}
\end{aligned}
$$

For this equality to hold for all t, we need to have $c=\frac{1}{-1+i}=-\frac{1}{2}(1+i)$. Therefore $z_{p}=-\frac{1}{2}(1+i) e^{(1+i) t}$ solves (1), and

$$
\begin{aligned}
y_{p}=\operatorname{Im}\left(z_{p}\right)=-\frac{1}{2} \operatorname{Im}\left((1+i) e^{(1+i) t}\right) & =-\frac{1}{2}\left(\operatorname{Re}(1+i) \operatorname{Im}\left(e^{(1+i) t}\right)+\operatorname{Im}(1+i) \operatorname{Re}\left(e^{(1+i) t}\right)\right) \\
& =-\frac{1}{2}\left(1 \cdot e^{t} \sin t+1 \cdot e^{t} \cos t\right) \\
& =-\frac{1}{2} e^{t}(\sin t+\cos t),
\end{aligned}
$$

is a partial solution to $y^{\prime \prime}-y^{\prime}=e^{t} \sin t$.
Alternatively, we can use variation of parameters. We then look for a solution of the form $y_{p}(t)=v_{1}(t)+v_{2}(t) e^{t}$ (because $y_{h}(t)=c_{1}+c_{2} e^{t}$ is the general solution of the homogenous equation $\left.y^{\prime \prime}-y^{\prime}=0\right)$. We then have $y_{p}^{\prime}(t)=v_{1}^{\prime}(t)+v_{2}^{\prime}(t) e^{t}+v_{2}(t) e^{t}$. Assume that $v_{1}^{\prime}(t)+v_{2}^{\prime}(t) e^{t}=0$. Then $y_{p}^{\prime}(t)=v_{2}(t) e^{t}, y_{p}^{\prime \prime}(t)=v_{2}(t) e^{t}+v_{2}^{\prime}(t) e^{t}$ and $y_{p}^{\prime \prime}(t)-y_{p}^{\prime}(t)=v_{2}^{\prime}(t) e^{t}$. The solution of the system

$$
\begin{aligned}
& v_{1}^{\prime}(t)+v_{2}^{\prime}(t) e^{t}=0 \\
& v_{2}^{\prime}(t) e^{t}=\sin (t) e^{t}
\end{aligned}
$$

is $v_{2}^{\prime}(t)=\sin (t), v_{1}^{\prime}(t)=-\sin (t) e^{t}$, so if we let $v_{2}(t)=\int \sin (t) d t=-\cos (t)$ and $v_{1}(t)=\int-\sin (t) e^{t} d t=\frac{1}{2}\left(\cos (t) e^{t}-\sin (t) e^{t}\right)$ (use partial integration or see Rottmann page 144), then $y_{p}(t)=v_{1}(t)+v_{2}(t) e^{t}=-\frac{1}{2}\left(\cos (t) e^{t}+\sin (t) e^{t}\right)$ is a partial solution.
We know from a) that $y_{h}(t)=c_{1}+c_{2} e^{t}$ is the general solution of the homogenous equation $y^{\prime \prime}-y^{\prime}=0$, so it follows that $y(t)=y_{h}(t)+y_{p}(t)=c_{1}+c_{2} e^{t}-\frac{1}{2} e^{t}(\sin t+\cos t)$ is the general solution of $y^{\prime \prime}-y^{\prime}=e^{t} \sin t$.

Problem $3 \quad$ Let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right]$.
a) Find an orthogonal basis for the plane in \mathbb{R}^{3} spanned by \mathbf{u}_{1} and \mathbf{u}_{2}.

Solution. We use the Gram-Schmidt procedure

$$
\begin{aligned}
& \mathbf{w}_{1}=\mathbf{u}_{1}, \\
& \mathbf{w}_{2}=\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}=\mathbf{u}_{2}-\frac{2}{2} \mathbf{w}_{1} .
\end{aligned}
$$

Inserting \mathbf{u}_{1} and \mathbf{u}_{2} gives $\mathbf{w}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right] .\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is an orthogonal basis for the plane spanned by \mathbf{u}_{1} and \mathbf{u}_{2}.
b) Find the distance from \mathbf{v} to the plane in \mathbb{R}^{3} spanned by \mathbf{u}_{1} and \mathbf{u}_{2}.

Solution. We use the orthogonal basis from a) to calculate the orthogonal projection of \mathbf{v} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$.

$$
\hat{\mathbf{v}}=\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\frac{\mathbf{v} \cdot \mathbf{w}_{2}}{\mathbf{w}_{2} \cdot \mathbf{w}_{2}} \mathbf{w}_{2}=\frac{2}{2} \mathbf{w}_{1}+\frac{6}{3} \mathbf{w}_{2}=\mathbf{w}_{1}+2 \mathbf{w}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]
$$

The distance from \mathbf{v} to $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is given by

$$
\|v-\hat{v}\|=\left\|\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\|=\sqrt{6} .
$$

Problem 4 A particle moving in a plane under the influence of a force has the equation of motion

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}
0 & -5 \\
1 & -2
\end{array}\right] \mathbf{x}(t)
$$

where $\mathbf{x}(t)$ denotes the position of the particle at the time t. Find $\mathbf{x}(t)$ assuming that $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. The answer should be given in the form $\mathbf{x}(t)=e^{a t}\left[\begin{array}{l}c_{1} \cos (b t)+c_{2} \sin (b t) \\ c_{3} \cos (b t)+c_{4} \sin (b t)\end{array}\right]$ where $a, b, c_{1}, c_{2}, c_{3}$ and c_{4} are real numbers.

Solution. Let $A=\left[\begin{array}{ll}0 & -5 \\ 1 & -2\end{array}\right]$. The characteristic polynomial of A is $\lambda^{2}+2 \lambda+5$, with complex roots $\lambda=-1+2 i$ and $\bar{\lambda}=-1-2 i$. From the matrix $A-\lambda I=\left[\begin{array}{cc}1-2 i & -5 \\ 1 & -1-2 i\end{array}\right]$, we can see that the eigenvector corresponding to λ is $\mathbf{v}=\left[\begin{array}{c}1+2 i \\ 1\end{array}\right]$. The eigenvector corresponding to $\bar{\lambda}$ is therefore simply $\overline{\mathbf{v}}=\left[\begin{array}{c}1-2 i \\ 1\end{array}\right]$. The general complex solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is given in terms of the eigenvectors as

$$
\mathbf{x}(t)=c_{1} e^{\lambda t} \mathbf{v}+c_{2} e^{\bar{\lambda} t} \overline{\mathbf{v}},
$$

where c_{1} and c_{2} are complex numbers. To obtain the solution satisfying the initial condition $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, we get two equations for c_{1}, c_{2}.

$$
\begin{aligned}
\mathbf{x}(0) & =c_{1} \mathbf{v}+c_{2} \overline{\mathbf{v}} \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right] } & =\left[\begin{array}{c}
c_{1}+c_{2}+2\left(c_{1}-c_{2}\right) i \\
c_{1}+c_{2}
\end{array}\right] .
\end{aligned}
$$

Subtracting the second equation from the first, we see that $c_{1}=c_{2}$, and then the second equation gives that $c_{1}=c_{2}=\frac{1}{2}$. The solution of the initial value problem is therefore

$$
\mathbf{x}(t)=\frac{1}{2} e^{\lambda t} \mathbf{v}+\frac{1}{2} e^{\bar{\lambda} t} \overline{\mathbf{v}} .
$$

To get this expression on the form required, we could expand this expression using $e^{a+b i}=$ $e^{a}(\cos b+i \sin b)$. A quicker way is to recognise the expression on the right hand side above as $\frac{1}{2}(\mathbf{w}(t)+\overline{\mathbf{w}}(t))=\operatorname{Re}(\mathbf{w}(t))$ with $\mathbf{w}(t)=e^{\lambda t} \mathbf{v}$. So

$$
\begin{aligned}
\mathbf{x}(t) & =\operatorname{Re}\left(e^{\lambda t} \mathbf{v}\right) \\
& =\operatorname{Re}\left(e^{(-1+2 i) t}\left[\begin{array}{c}
1+2 i \\
1
\end{array}\right]\right) \\
& =e^{-t} \operatorname{Re}\left(\left[\begin{array}{c}
e^{2 i t}(1+2 i) \\
e^{2 i t}
\end{array}\right]\right) \\
& =e^{-t} \operatorname{Re}\left(\left[\begin{array}{c}
(\cos (2 t)+i \sin (2 t))(1+2 i) \\
\cos (2 t)+i \sin (2 t)
\end{array}\right]\right) \\
& =e^{-t} \operatorname{Re}\left(\left[\begin{array}{c}
\cos (2 t)-2 \sin (2 t)+i(2 \cos (2 t)+\sin (2 t)) \\
\cos (2 t)+i \sin (2 t)
\end{array}\right]\right) \\
& =e^{-t}\left[\begin{array}{c}
\cos (2 t)-2 \sin (2 t) \\
\cos (2 t)
\end{array}\right]
\end{aligned}
$$

Problem 5 You are given that

$$
\operatorname{det}\left(\left[\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right]\right)=2
$$

Use this information to compute the determinant of the matrix

$$
\left[\begin{array}{ccc}
x & y & z \\
p & q & r \\
5 p-2 a & 5 q-2 b & 5 r-2 c
\end{array}\right]
$$

Give reasons for your answer.

Solution. By the properties of determinants and elementary row operations

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
x & y & z \\
p & q & r \\
5 p-2 a & 5 q-2 b & 5 r-2 c
\end{array}\right]\right) & =-\operatorname{det}\left(\left[\begin{array}{ccc}
5 p-2 a & 5 q-2 b & 5 r-2 c \\
p & q & r \\
x & y & z
\end{array}\right]\right) \\
& =-\operatorname{det}\left(\left[\begin{array}{ccc}
-2 a & -2 b & -2 c \\
p & q & r \\
x & y & z
\end{array}\right]\right) \\
& =-(-2) \operatorname{det}\left(\left[\begin{array}{ccc}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right]\right) \\
& =2 \cdot 2=4 .
\end{aligned}
$$

Problem 6 You do not have to give reasons for your answers for this problem.
a) For each of the following 4 complex numbers, determine whether it lies in the first quadrant of the complex plane (i.e., both its real part and its imaginary part are nonnegative) or not.

1. $\sqrt{3}-i$.

Not in first quadrant.
2. $\frac{-2+i}{2+3 i}$.

Not in first quadrant. The expression is equal to $-\frac{1}{13}+\frac{8}{13} i$.
3. $e^{-2+7 \pi i}$.

Not in first quadrant. $e^{-2+7 \pi i}=e^{-2} e^{7 \pi i}=e^{-2} e^{\pi i}=-e^{2}$.
4. z^{2}, where $|z|=2$ and $\operatorname{Arg}(z)=\frac{\pi}{3}$.

Not in first quadrant. $\arg \left(z^{2}\right)=2 \cdot \operatorname{Arg}(z)=\frac{2 \pi}{3}>\frac{\pi}{2}$
b) Let A be an $n \times n$ matrix, B an $m \times n$ matrix, and C an $n \times m$ matrix, where $n \neq m$. For each of the following 4 expressions, determine whether it is well defined or not.

1. $A B^{T}$.

Defined.
2. $B B^{T}$.

Defined.

3. $C B+2 A$.

Defined.
4. $B^{2}-A^{2}$.

Not defined. B^{2} is not defined.
c) Let A and D be $n \times n$ matrices and let \mathbf{b} be a nonzero vector in \mathbb{R}^{n}. For each of the following 4 statements, determine whether it is true or not.

1. If the system $A \mathbf{x}=\mathbf{b}$ has more than one solution, then the system $A \mathbf{x}=0$ also has more than one solution.
True. If \mathbf{x}_{1} and \mathbf{x}_{2} both solves $A \mathbf{x}=\mathbf{b}$, then $A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=A \mathbf{x}_{1}-A \mathbf{x}_{2}=\mathbf{b}-\mathbf{b}=\mathbf{0}$.
2. If A^{T} is non-invertible, then A is non-invertible.

True. A^{T} non-invertible $\Leftrightarrow \operatorname{rank}\left(A^{T}\right)<n \Leftrightarrow \operatorname{rank}(A)<n \Leftrightarrow A$ non-invertible.
3. If $A D=I$, then $D A=I$.

True. A and D are square, so if $A D=I$ then $D=A^{-1}$.
4. If A has orthonormal columns, then A is invertible.

True. If A has orthonormal columns, then $A^{T} A=I$, so $A^{T}=A^{-1}$.
d) For each of the following 4 statements, determine whether it is true or not.

1. The two vectors $\left[\begin{array}{c}3 \\ 2 \\ -5 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -1\end{array}\right]$ are orthogonal.

Not true.

2. If $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathbf{y}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{z}=\left[\begin{array}{c}-2 \\ 1 \\ -3\end{array}\right]$, then \mathbf{z} belongs to the orthogonal complement of $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
True. \mathbf{z} is orthogonal to both \mathbf{x} and \mathbf{y}, and thus to all of $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
3. An $m \times n$ matrix B has orthonormal columns if and only if $B B^{T}=I$.

Not true. (B has orthonormal columns if and only if $B^{T} B=I$.) $B B^{T}=I$ is equivalent to A having orthonormal rows, but nonsquare matrices may have orthonormal rows but not orthonormal columns and vice versa.
4. If \mathbf{x} is orthogonal to \mathbf{y} and \mathbf{z}, then \mathbf{x} is orthogonal to $\mathbf{y}-\mathbf{z}$.

True. $\mathbf{x}^{T}(\mathbf{y}-\mathbf{z})=\mathbf{x}^{T} \mathbf{y}-\mathbf{x}^{T} \mathbf{z}=0$
e) Let A be an $n \times n$ matrix. For each of the following 4 statements, determine whether it is true or not.

1. If A is orthogonally diagonalizable, then A is symmetric.

True. $A=P D P^{T} \Leftrightarrow A^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A$.
2. If A is an orthogonal matrix, then A is symmetric.

Not true. Counterexample: $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is orthogonal, but not symmetric.
3. If $\mathbf{x}^{T} A \mathbf{x}>0$ for every $\mathbf{x} \neq \mathbf{0}$, then the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is positive definite. True. By definition.
4. Every quadratic form can by a change of variable be transformed into a quadratic form with no cross-product term.
True. Every quadratic form can be written $\mathbf{x}^{T} A \mathbf{x}$ with A symmetric. When A is symmetric, it is also orthogonally diagonalizable, $A=P D P^{T}$, so the change of variables defined by $\mathbf{x}=P \mathbf{y}$ gives $\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T} D \mathbf{y}$.
f) Let \mathbf{u} and \mathbf{v} be nonzero vectors in \mathbb{R}^{n}, and let r be a scalar. For each of the following 4 statements, determine whether it is true or not.

1. $\|r \mathbf{v}\|=r\|\mathbf{v}\|$, unless $r=0$.

Not true. Does not hold for $r<0$..
2. If \mathbf{u} and \mathbf{v} are orthogonal, then $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent.

True. If $a \mathbf{u}+b \mathbf{v}=0$, then $\mathbf{u}^{T}(a \mathbf{u}+b \mathbf{v})=a \mathbf{u}^{T} \mathbf{u}+b \mathbf{u}^{T} \mathbf{v}=a\|u\|^{2}=0$, so $a=0$. Similarly, $\mathbf{v}^{T}(a \mathbf{u}+b \mathbf{v})=0$ gives $b=0$.
3. If $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.

True. In general, $\|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v})^{T}(\mathbf{u}+\mathbf{v})=\|\mathbf{u}\|^{2}+2 \mathbf{u}^{T} \mathbf{v}+\|\mathbf{v}\|^{2}$ holds.
4. If $\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.

True. This is the same as 3 where $-\mathbf{v}$ is substituted for \mathbf{v}.
g) For each of the following 4 statements, determine whether it is true or not.

1. If A is a matrix, then $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Nul}(A))$.

Not true. By the definition of $\operatorname{rank}, \operatorname{rank}(A)=\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Col}(A))$, $\operatorname{dim}(\operatorname{Nul}(A))$ is usually different.
2. A 5×10 matrix can have a 2 -dimensional null space.

Not true. A 5×10 matrix has maximal rank 5 . The rank theorem tells us that the rank of the matrix plus the dimension of the null space for a 5×10 matrix is equal to 10 . Therefore the dimension of the null space is at least 5 .
3. Row operations on a matrix can change its null space.

Not true. This is a basic property of row operations.
4. If the matrices A and B have the same reduced echelon form, then
$\operatorname{Row}(A)=\operatorname{Row}(B)$.
True. The row space of a matrix is spanned by the nonzero rows of its reduced echelon form.
h) For each of the following 4 statements, determine whether it is true or not.

1. The polynomials $p_{1}(t)=1+t^{2}$ and $p_{2}(t)=1-t^{2}$ are linearly independent. True. $p_{2}(t) / p_{1}(t)$ is defined for all t, but not constant.
2. If A is a 3×4 matrix, then the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{4}.
Not true. The mapping is a linear transformation from \mathbb{R}^{4} to \mathbb{R}^{3}.
3. If a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is onto \mathbb{R}^{4} (or is surjective), then T cannot be one-to-one (injective).
Not true. A linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ which is surjective is in fact invertible, and therefore also injective.
4. A linear transformation $S: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ cannot be one-to-one (injective).

True. The null space of the transformation has to be at least one-dimensional, so $S(\mathbf{x})=\mathbf{0}$ has infinitely many solutions.

