1 a) We can assume without loss of generality that $j=1$. We can then write x as

$$
x=\left(x_{1}, \ldots, x_{n}\right)=x_{1}\left(1, x_{2} / x_{1}, \ldots, x_{n} / x_{1}\right) .
$$

We calculate the p-norm

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}=\left|x_{1}\right|\left(1+\left|\frac{x_{2}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p}\right)^{1 / p} .
$$

We note that by assumption $\mid x_{i} / x_{1}<1$ for $i=2, \ldots, n$. Therefore

$$
1+\left|\frac{x_{2}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p} \rightarrow 1 \quad \text { as } p \rightarrow \infty .
$$

We also note that for $a \geq 1$ we have $a^{1 / p} \leq a$. Hence

$$
\left(1+\left|\frac{x_{2}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p}\right)^{1 / p} \rightarrow 1 \text { as } p \rightarrow \infty
$$

Since $\left|x_{1}\right|=\max _{1 \leq i \leq n}\left|x_{i}\right|$ we have proven the statement.
b) Assume that there are $m \leq n$ indices (assumed to be $1, \ldots, m$) such that

$$
\left|x_{1}\right|=\ldots=\left|x_{m}\right|=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

The p-norm is now

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}=\left|x_{1}\right|\left(1+\left|\frac{x_{2}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p}\right)^{1 / p} .
$$

Since $\left|x_{1}\right|=\ldots=\left|x_{m}\right|$ we have

$$
\|x\|_{p}=\left|x_{1}\right|\left(m+\left|\frac{x_{m+1}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p}\right)^{1 / p}
$$

. We have

$$
m+\left|\frac{x_{m+1}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p} \rightarrow m \text { as } p \rightarrow \infty
$$

and hence,

$$
\left(m+\left|\frac{x_{m+1}}{x_{1}}\right|^{p}+\ldots+\left|\frac{x_{n}}{x_{1}}\right|^{p}\right)^{1 / p} \rightarrow 1 \text { as } p \rightarrow \infty .
$$

Note that for any fixed $a>0$ we have $a^{1 / p} \rightarrow 1$ as $p \rightarrow \infty$.
c) Here is the code for generating the plots, which can be found at the end of the document.
import numpy as np
import matplotlib. pyplot as plt
from scipy.linalg import norm
$\mathrm{N}=101$
$\mathrm{X}=$ np. linspace $(-1.5,1.5, \mathrm{~N})$
\$Plot D for $p=1$ plt.figure (figsize $=(10,10))$
for i in range (N):
for j in range (N) :
if $\operatorname{norm}(n p . \operatorname{array}([X[i], X[j]]), 1)<=1:$ plt.plot (X[i], X[j], 'ko')
\#Plot D for $p=2$
plt.figure(figsize $=(10,10))$
for i in range (N) :
for j in range (N) :
if $\operatorname{norm}(n p . \operatorname{array}([X[i], X[j]]), 2)<=1$:
plt.plot (X[i],X[j], 'ko')
\#Plot D for $p=4$
plt.figure(figsize $=(10,10))$
for in range(N):
for j in range (N) :
if $\operatorname{norm}(n p . \operatorname{array}([X[i], X[j]]), 4)<=1:$
plt.plot (X[i], X[j], 'ko')
\#Plot D for $p=i n f$
plt.figure(figsize $=(10,10))$
for in range(N):
for j in range (N) :
if $\operatorname{norm}(n p . \operatorname{array}([X[i], X[j]]), \operatorname{np} . i n f)<=1$:
plt.plot (X[i], X[j], 'ko')

2 Since $p_{1}=1$ already satisfies $\left\|p_{1}\right\|=1$ we do not need to normalize it. Hence, $q_{1}=p_{1}=1$. In order to calculate q_{2} we first need to calculate

$$
\left\langle p_{2}, q_{1}\right\rangle=\int_{0}^{1} x \mathrm{~d} x=\frac{1}{2}
$$

We then calculate

$$
r_{2}=p_{2}-\left\langle p_{2}, q_{1}\right\rangle q_{1}=x-\frac{1}{2} \cdot 1=x-\frac{1}{2}
$$

We calculate the norm

$$
\left\|r_{2}\right\|=\left(\int_{0}^{1} r_{2}(x)^{2} \mathrm{~d} x\right)^{1 / 2}=\frac{1}{2 \sqrt{3}}
$$

From this we get $q_{2}=r_{2} /\left\|r_{2}\right\|=2 \sqrt{3}\left(x-\frac{1}{2}\right)$. We likewise need to calculate

$$
\begin{gathered}
\left\langle p_{3}, q_{1}\right\rangle=\int_{0}^{1} x^{2} \mathrm{~d} x=\frac{1}{3} \\
\left\langle p_{3}, q_{2}\right\rangle=\int_{0}^{1} 2 \sqrt{3} x^{2}\left(x-\frac{1}{1}\right) \mathrm{d} x=\frac{1}{2 \sqrt{3}}
\end{gathered}
$$

This allows us to calculate

$$
r_{3}=p_{3}-\left\langle p_{3}, q_{1}\right\rangle q_{1}-\left\langle p_{3}, q_{2}\right\rangle q_{2}=x^{2}-x+\frac{1}{6}
$$

We calculate the norm

$$
\left\|r_{3}\right\|=\left(\left(x^{2}-x+\frac{1}{6}\right)^{2} \mathrm{~d} x\right)^{1 / 2}=\frac{1}{\sqrt{180}}=\frac{1}{6 \sqrt{5}}
$$

This means that finally,

$$
q_{1}=1, \quad q_{2}=2 \sqrt{3}\left(x-\frac{1}{2}\right), \quad q_{3}=6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)
$$

3 The main tool to solve this exercise is to use the trigonometric formulas in the hint, and the fact that

$$
\int_{0}^{2 \pi} \sin (n x) \mathrm{d} x=0
$$

and

$$
\int_{0}^{2 \pi} \cos (n x) \mathrm{d} x= \begin{cases}2 \pi, & n=0 \\ 0, & n \neq 0\end{cases}
$$

The answers are therefore
a) 2π
b) π
c) 0
d) 0 .

4 a) We se that $\|f\|_{C}=\max _{x \in[0,1]}|f(x)|=0$ if and only if $f(x)=0$ for all $x \in[0,1]$, that is when $f=0$. We also have for any $a \in \mathbb{R}$

$$
\|a f\|_{C}=\max _{x \in[0,1]}|a f(x)|=\max _{x \in[0,1]}|a| \cdot|f(x)|=|a| \cdot \max _{x \in[0,1]}|f(x)|=|a| \cdot\|f\|_{C}
$$

Finally, let f and g have the global maximas x_{f} and x_{g}. Then

$$
\max _{x \in[0,1]}|f(x)+g(x)| \leq \max _{x \in[0,1]}|f(x)|+|g(x)| \leq\left|f\left(x_{f}\right)\right|+\left|g\left(x_{g}\right)\right|=\|f\|_{C}+\|g\|_{C}
$$

Therefore, $\|\cdot\|_{C}$ satisfies all requirements of a norm.
b) For $\|\cdot\|_{\star}$ all calculations are the same (with $[0,0.5]$ replacing $[0,1]$), except the first property. This can be seen by the function

$$
\hat{f}(x)=\left\{\begin{array}{l}
0, \quad x \leq 0.5 \\
x-0.5, \quad x>0.5
\end{array}\right.
$$

This function is clearly not 0 but satisfies $\|\hat{f}\|_{\star}=0$. Hence, $\|\cdot\|_{\star}$ is not a norm. It is however a semi-norm, which is defined to satisfy the assumptions of a norm except that $\|f\|=0 \Rightarrow f=0$.

Plots of unit-discs

Figure 1: Plots of unit-discs for $p=1$ (top left), $p=2$ (top right), $p=4$ (bottom left) and $p=\infty$ (bottom right).

