Exercise 5

Problems from the textbook:

- 7.3 Given a random sample X_1, \ldots, X_n from a population with pdf $f(x|\theta)$, show that maximizing the likelihood function, $L(\theta|\mathbf{x})$, as a function of θ is equivalent to maximizing $\log L(\theta|\mathbf{x})$.
- 7.6 Let X_1, \ldots, X_n be a random sample from the pdf

$$f(x|\theta) = \theta x^{-2}, \quad 0 < \theta \le x < \infty.$$

- (a) What is a sufficient statistic for θ ?
- (b) Find the MLE of θ .
- (c) Find the method of moments estimator of θ .
- 7.9 Let X_1, \ldots, X_n be iid with pdf

$$f(x|\theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta, \quad \theta > 0.$$

Estimate θ using both the method of moments and maximum likelihood. Calculate the means and variances of the two estimators. Which one should be preferred and why?

> Example 7.2.16 (Normal Bayes estimators) Let $X \sim n(\theta, \sigma^2)$, and suppose that the prior distribution on θ is $n(\mu, \tau^2)$. (Here we assume that σ^2 , μ , and τ^2 are all known.) The posterior distribution of θ is also normal, with mean and variance given by

$$E(\theta|x) = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu,$$

(7.2.10)

$$\operatorname{Var}(\theta|x) = \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}.$$

Info for 7.22:

- 7.22 This exercise will prove the assertions in Example 7.2.16, and more. Let X_1, \ldots, X_n be a random sample from a $n(\theta, \sigma^2)$ population, and suppose that the prior distribution on θ is $n(\mu, \tau^2)$. Here we assume that σ^2 , μ , and τ^2 are all known.
 - (a) Find the joint pdf of \bar{X} and θ .

 - (b) Show that $m(\bar{x}|\sigma^2, \mu, \tau^2)$, the marginal distribution of \bar{X} , is $n(\mu, (\sigma^2/n) + \tau^2)$. (c) Show that $\pi(\theta|\bar{x}, \sigma^2, \mu, \tau^2)$, the posterior distribution of θ , is normal with mean and variance given by (7.2.10).
- 7.24 Let X_1, \ldots, X_n be iid Poisson(λ), and let λ have a gamma(α, β) distribution, the conjugate family for the Poisson.
 - (a) Find the posterior distribution of λ .
 - (b) Calculate the posterior mean and variance.

Discuss: What is the difference between the likelihood function and the likelihood statistic? Demonstrate the difference by an example. Remember: A statistic is a function of the data!

From previous exams:

H2020, problem 1b, c

H2019, problem 3b

V2009, problem 2c (a and b are also good practice)