Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for
 TMA4212 Numerical Solution of Differential Equations by Difference Methods

Academic contact during examination: Anne Kværnø
Phone: 92663824

Examination date: May 202019
Examination time (from-to): 09:00-13:00
Permitted examination support material: Code C:
Approved simple pocket calculator.
The two notes by Brynjulf Owren on finite differences and Charles Curry on finite elements. Rottmann matematisk formelsamling.

Language: English
Number of pages: 4
Number of pages enclosed: 0

Checked by:

Informasjon om trykking av eksamensoppgave
Originalen er: 1-sidig $\quad \square$ sort/hvit $\boxtimes \quad$ 2-sidig \boxtimes skal ha flervalgskjema \square

Date
Signature

All answers must be properly argued for.

Problem 1 Consider the equation

$$
\begin{aligned}
u_{t} & =a u_{x x}-u, \quad 0<x<1, a>0 \\
u(0, t) & =u(1, t)=0, \\
u(x, 0) & =f(x)
\end{aligned}
$$

a) Set up a finite difference scheme for this problem, using a central difference with stepsize h in the x-direction, and a backward difference with stepsize k in the t-direction. Let $h=1 / M$.

Find the local truncation error of the scheme.
b) Prove that the scheme is convergent for all values of $r=a k / h^{2}$.

Problem 2 Consider the hyperbolic differential equation

$$
\begin{aligned}
u_{t}+\frac{1}{(1+t)^{2}} u_{x} & =0, \quad 0<x<1, \quad t>0 \\
u(x, 0) & =f(x)
\end{aligned}
$$

a) Find the characteristic $x(t)$ of the above equations through some point $\left(x^{*}, t^{*}\right)$. Indicate how the characteristics look like by making a sketch.
On which of the boundaries $x=0$ or $x=1$ should there be a boundary condition?
b) Assume that the problem is solved by an explicit difference formula of the form

$$
U_{m+1}^{n+1}=a_{m+1}^{n} U_{m+1}^{n}+a_{m}^{n} U_{m}^{n}+a_{m-1}^{n} U_{m-1}^{n},
$$

using a uniform grid with stepsize h in the x-direction and k in the t-direction. Set $h=0.25$. What restriction is required on k for the method to satisfy the CFL condition for all $t>0$?

Problem 3 Given the equation

$$
\begin{array}{rlrl}
u_{t}+v(u) u_{x} & =\left(a(u) u_{x}\right)_{x}, & 0<x<1 \\
u(0, t) & =0, \quad u_{x}(1, t)+u(1, t)=0, & \\
u(x, 0) & =f(x) & &
\end{array}
$$

where the given functions $v(u)$ and $a(u)$ are both positive.
Suggest a semi-discretization of the problem.
Choose an appropriate method for solving the resulting system of ordinary differential equations, and write down the complete scheme.

Justify your choices.

Problem 4 Consider the transport equation

$$
u_{t}+a u_{x}=0, \quad-\infty<x<\infty
$$

Investigate the dissipation properties of the upwind method

$$
U_{m}^{n+1}=U_{m}^{n}-p\left(U_{m}^{n}-U_{m-1}^{n}\right),
$$

where $p=a k / h$.
Given the intial conditions

$$
u(x, 0)=f(x)= \begin{cases}1, & -1<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

We know that the exact solution of the transport equation is $u(x, t)=f(x-a t)$, that is, the inital rectangle moves along x with speed a.

Assuming that $p=0.8$, how would you expect the initial profile to be deformed over time? Make a sketch.
What if $p=1$?

Problem 5

We want to solve the Poisson equation

$$
\Delta u=u_{x x}+u_{y y}=f(x, y)
$$

on a domain Ω, using the 5 -point formula on a regular grid with stepsize h. Part of the domain, including the grid, is depicted in the figure below. At the boundary Γ_{N} the following boundary condition holds

$$
\frac{\partial u}{\partial n}=\nabla u \cdot \mathbf{n}=g(x, y)
$$

for a given function $g(x, y)$.

Find an approximation of the boundary condition in node 7 using the solutions in the nodes $5,6,7$ and 8 . Find the local truncation error of the approximation, and give its order.

Problem 6 Given the equation

$$
\begin{gathered}
-\left(a(x) u_{x}\right)_{x}=1, \quad 0<x<1, \\
u_{x}(0)=1, \quad u(1)=0,
\end{gathered}
$$

where $a(x)>0$ is some known, positive function of x.
a) The weak formulation of the problem is given by

$$
\text { Find } u \in V \text { such that } a(u, v)=F(v) \text { for all } v \in V
$$

Find the function space V, the bilinear form $a(u, v)$ and the functional $F(v)$ in this case.
b) This problem is solved by the linear finite element method on a uniform grid $x_{i}=i h, i=0, \ldots, M$ with $h=1 / M$, using linear nodal basis functions. Show that this results in a linear system of equations:

$$
A \mathbf{u}=\mathbf{b}
$$

Let $a(x)=1 / 2+x$ and find the stiffness matrix A and the load vector \mathbf{b} for a general value of M.

