Problem 1 Let $a \geq 0, b, c \in \mathbb{R}$, and $b c \geq 0$. Then the eigenvalues of

$$
A_{a, b, c}:=\left(\begin{array}{ccc}
a & b & 0 \\
c & a & b \\
0 & c & a
\end{array}\right) \quad \text { are } \quad \lambda_{1}=a, \quad \lambda_{2}=a-\sqrt{2 b c}, \quad \lambda_{3}=a+\sqrt{2 b c} .
$$

Assume $A:=A_{2, b, c}(a=2)$ is symmetric positive definite.
Which values of b and c make A symmetric positive definite?
Show that the Jacobi iteration for $A \vec{x}=\vec{b}$ converges for any fixed $\vec{b} \in \mathbb{R}^{3}$.

Problem 2 We want to solve the initial-boundary value problem

$$
\left\{\begin{array}{lll}
u_{t}-u_{x x}+x u_{x}=1 & \text { in } & (0,1) \times(0, T) \tag{1}\\
u(0, t)=1, \quad u(1, t)=e & \text { in } & (0, T) \\
u(x, 0)=e^{x} & \text { in } & (0,1),
\end{array}\right.
$$

by finite difference methods on the grid

$$
\left\{\left(x_{m}, t_{n}\right)=(m h, n k): m=0, \ldots, M, \quad n=0, \ldots, N\right\}
$$

where $h=\frac{1}{M}$ and $k=\frac{T}{N}$. Let $U_{m}^{n} \approx u\left(x_{m}, t_{n}\right)$ be the approximate solution.
a) Consider a consistent discretisation of (1) by backward differences in time and central differences in space. With $\vec{U}^{n}=\left[U_{1}^{n}, \ldots, U_{M-1}^{n}\right]^{T}$, we get that

$$
A_{h} \vec{U}^{n+1}=\vec{U}^{n}+\vec{F}^{n}, \quad n=1, \ldots, N-1 ; \quad \vec{U}^{0}=\vec{G} .
$$

Determine A_{h}, \vec{F}^{n}, and \vec{G}.
b) Consider a consistent discretisation of (1) by forward differences in time and central differences in space. Write the scheme in the form

$$
\alpha_{m, m}^{n+1} U_{m}^{n+1}-\sum_{\ell} \alpha_{m, \ell}^{n} U_{\ell}^{n}=F_{m}^{n}, \quad m=1, \ldots, M-1,
$$

and find the CFL condition that makes the scheme monotone.

Problem 3 Consider the boundary value problem

$$
\left\{\begin{array}{c}
-L u(x):=-\left(\frac{d^{2}}{d x^{2}}-x \frac{d}{d x}-1\right) u(x)=1 \quad \text { in } \quad(0,1) \tag{2}\\
u(0)=1, \quad u(1)=2
\end{array}\right.
$$

On the grid $\left\{x_{m}=m h: m=0, \ldots, M\right\}, h=\frac{1}{M}$, we discretise this problem by

$$
\left\{\begin{array}{c}
-L_{h} U_{m}:=-\left(\frac{\delta_{h}^{2}}{h^{2}}-x_{m} \frac{\nabla_{h}}{h}-1\right) U_{m}=1, \quad m=1, \ldots, M-1 \tag{3}\\
U_{0}=1, \quad U_{M}=2
\end{array}\right.
$$

where δ_{h}^{2} and ∇_{h} are central and backward differences, and $U_{m} \approx u\left(x_{m}\right)$.
a) Compute the local truncation error for the scheme (3),

$$
\tau_{m}=-\left(L-L_{h}\right) u\left(x_{m}\right), \quad m=1, \ldots, M-1
$$

when $u \in C^{4}([0,1])$.
b) Show that the scheme (3) is stable with respect to the right hand side:

$$
\begin{gathered}
-L_{h} V_{m}=f_{m}, \quad m=1, \ldots, M-1 ; \quad V_{0}=0, \quad V_{M}=0 \\
\Downarrow \\
\max _{m}\left|V_{m}\right| \leq \max _{m}\left|f_{m}\right|
\end{gathered}
$$

Hint: You may use without proof that the scheme is monotone and (therefore) the discrete maximum principle holds. Note that $-L_{h} 1=1$.
c) Show the error bound

$$
\max _{m}\left|u\left(x_{m}\right)-U_{m}\right| \leq \frac{1}{2}\left\|u^{\prime \prime}\right\|_{L^{\infty}(0,1)} h+\frac{1}{12}\left\|u^{(4)}\right\|_{L^{\infty}(0,1)} h^{2}
$$

Problem 4 Consider the boundary value problem for the 1 d Poission equation,

$$
\begin{equation*}
-\frac{d}{d x}\left(\sin x \frac{d u}{d x}\right)=\cos x \quad \text { in } \quad \Omega:=\left(\frac{\pi}{6}, \frac{\pi}{2}\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
u\left(\frac{\pi}{6}\right)=1 \quad \text { and } \quad u\left(\frac{\pi}{2}\right)=0 . \tag{5}
\end{equation*}
$$

a) The weak/variational formulation for problem (4)-(5) is to find $u \in X$ such that the boundary condition (5) holds and

$$
a(u, v)=F(v) \quad \text { for all } \quad v \in V .
$$

Find the correct choices for $X, V(\subset X), a$, and F here, and show that $a(\cdot, \cdot)$ is a continuous (and) bilinear form on $X \times X$.

Approximate problem (4)-(5) by the \mathbb{P}_{1} finite element method on the triangulation:

$$
K_{1}=\left(\frac{\pi}{6}, \frac{\pi}{4}\right), \quad K_{2}=\left(\frac{\pi}{4}, \frac{\pi}{3}\right), \quad K_{3}=\left(\frac{\pi}{3}, \frac{\pi}{2}\right) .
$$

Let the finite element solution be $u_{h}(x)=\sum_{i=0}^{3} U_{i} \phi_{i}(x) \in X_{h}^{1}\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$.
b) Explain why the finite element method is equivalent to a linear system of the form

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
* & * & c & 0 \\
0 & c & * & * \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
U_{0} \\
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
*
\end{array}\right)
$$

and compute c.

