Examination paper for
 MA8109 Stochastic Prosesses in Engineering Systems

Academic contact during examination: Harald Krogstad
Phone: 41651817

Examination date: December 3, 2013
Examination time (from-to): 15:00-19:00
Permitted examination support material: C: Approved calculator, list of fomulas that comes with the exam.

Other information:

There is a list of usefull formulas at the end of this exam, read it before you start to work.

Language: English
Number of pages: 3
Number pages enclosed: 1

Problem 1

Let B_{t} be a Brownian motion in \mathbb{R}^{1}, show that $\tilde{B}_{t}=B_{t+1}-B_{1}$ is another Brownian motion in \mathbb{R}^{1}.

Problem 2 Let $0=t_{0}<t_{1}<\cdots<t_{N}=T$ be a partition of $[0, T]$ and

$$
\phi_{N}(t, \omega)=\sum_{j=0}^{N} B_{t_{j}}^{2}(\omega) \chi_{\left[t_{j}, t_{j+1}\right)}(t),
$$

where $B_{t}(\omega)$ is a Brownian motion in \mathbb{R}^{1} and the function $\chi_{A}(t)$ is 1 when $t \in A$ and 0 otherwise.
a) Give the definitions of the two Ito integrals
(i) $\int_{0}^{T} \phi_{N} d B_{s}$,
(ii) $\int_{0}^{T} B_{s}^{2} d B_{s}$.

Hint: Do not compute these integrals.
b) Find the expectation and variance of
(i) $X_{t}=\int_{0}^{t} s d B_{s}$,
(ii) $Y=\int_{0}^{T} B_{s}^{2} d B_{s}$.

Hint: The formulas at the end of the exam may be usefull.
Let $\tilde{\phi}$ be the elementary function defined by

$$
\tilde{\phi}(t, \omega)= \begin{cases}0, & t \in[0,1) \\ B_{1}^{2}(\omega), & t \geq 1\end{cases}
$$

where B_{1} is the Brownian motion at $t=1$.
c) Let $\left\{\mathcal{F}_{t}\right\}_{t}$ be the filtration generated by the Brownian motion B_{t} and define

$$
X_{t}(\omega)=\int_{0}^{t} \tilde{\phi}(s, \omega) d B_{s}(\omega) .
$$

Show by a direct argument that X_{t} is a martingale w.r.t. the filtration $\left\{\mathcal{F}_{t}\right\}_{t}$. Hint: The formulas at the end of the exam may be usefull.

Problem 3

Physicists have suggested the following (scaled) model for the position of a pollen particle suspended in a liquid that experiences periodic external forcing,

$$
\ddot{X}+\dot{X}=W+\sin t,
$$

where W is Gaussian white noise.
a) Write down the Ito interpretation of this equation.
b) Solve the Ito stochastic differential equation obtained in a).

Hint: Use an integrating factor.

Problem 4 Consider the following stochastic differential equation

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, \quad X_{0}=Z, \tag{1}
\end{equation*}
$$

where b and σ are continuous functions and Z is a random variable.
Give sufficient conditions on b, σ, and Z to have existence and uniqueness of a strong solution of (1).

Define what it means for X_{t} to be a strong solution of (1).

Problem 5

Let $f \in C_{c}^{2}\left(\mathbb{R}^{2}\right)$ and let $u \in C^{1,2}\left(\mathbb{R} \times \mathbb{R}^{2}\right)$ be the solution of

$$
\begin{array}{rlll}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} & \text { for } & (x, y) \in \mathbb{R}^{2}, t>0 \\
& u(0, x, y)=f(x, y) & \text { for } & (x, y) \in \mathbb{R}^{2} .
\end{array}
$$

Use an Ito diffusion to find an integral formula for $u(t, x, y)$.
Hint: The formulas at the end of the exam may be usefull.

Problem 6 Let $\tau_{U_{R}}^{x}$ be the exit-time from $U_{R}=\{x:|x|<R\}$ of the following one-dimensional Ito diffusion:

$$
X_{t}^{x}=x+\int_{0}^{t}\left(2+\sin X_{s}^{x}\right) d B_{s}
$$

Prove that for all $x \in U_{R}$ and $R>0$,

$$
E\left(\tau_{U_{R}}^{x}\right)<\infty .
$$

Hint: Try the "usual argument". Formulas at the end of the exam may be usefull.

Problem $7 \quad$ Let X_{t} and X_{t}^{ϵ} be (strong) solutions of the one-dimensional (stochastic) differential equations

$$
\begin{array}{ll}
d X_{t}=b\left(X_{t}\right) d t, & X_{0}=x_{0} \\
d X_{t}^{\epsilon}=b\left(X_{t}^{\epsilon}\right) d t+\epsilon d B_{t}, & X_{0}^{\epsilon}=x_{0}
\end{array}
$$

where $x_{0}, \epsilon \in \mathbb{R}$, and for all $x, y \in \mathbb{R}$,

$$
|b(x)-b(y)| \leq L|x-y| .
$$

Prove that there is a $C>0$ such that

$$
E\left(\left|X_{t}-X_{t}^{\epsilon}\right|^{2}\right) \leq C e^{C t} \epsilon^{2}
$$

Hint: The formulas at the end of the exam may be usefull.

List of useful formulae

Note: The list does not state the requirements for the formulae to be valid.
1D Gaussian variable: $X \in \mathcal{N}\left(\mu, \sigma^{2}\right)$;
(i) $\mathrm{E}(X-\mu)^{4}=3 \sigma^{4}$,
(ii) $\Phi_{X}(u)=e^{i \mu-\frac{1}{2} \sigma^{2} u^{2}}$,
(iii) $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{(x-\mu)^{2}}{2 \sigma}}$.

Conditional Expectations:

(i) If Y is \mathcal{H}-measurable, then $\mathrm{E}(Y X \mid \mathcal{H})=Y \mathrm{E}(X \mid \mathcal{H})$.
(ii) If X is independent of \mathcal{H}, then $\mathrm{E}(X \mid \mathcal{H})=\mathrm{E}(X)$.
(iii) If $\mathcal{G} \subset \mathcal{H}$, then $E(E(X \mid \mathcal{H}) \mid \mathcal{G})=E(X \mid \mathcal{G})$.

Itô Isometry: $\quad \mathrm{E}\left|\int_{0}^{T} f(t, \omega) d B_{t}(\omega)\right|^{2}=\int_{0}^{T} \mathrm{E}|f(t, \omega)|^{2} d t=\|f\|_{L^{2}(\Omega \times[0, T])}^{2}$

2D Itô Formula: The "Rules" and
$d g\left(t, X_{t}, Y_{t}\right)=\frac{\partial g}{\partial t} d t+\frac{\partial g}{\partial x} d X_{t}+\frac{\partial g}{\partial y} d Y_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(d X_{t}\right)^{2}+\frac{\partial^{2} g}{\partial x \partial y} d X_{t} d Y_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial y^{2}}\left(d Y_{t}\right)^{2}$.

The Generator for $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$:

$$
A(f)(x)=\sum_{i=1}^{n} b_{i}(x) \frac{\partial f}{\partial x_{i}}(x)+\frac{1}{2} \sum_{i, j=1}^{n}\left(\sigma(x) \sigma(x)^{T}\right)_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) .
$$

Dynkin's formula: $\quad E f\left(X_{\tau}^{x}\right)=f(x)+E\left(\int_{o}^{\tau} A f\left(X_{s}^{x}\right) d s\right)$.

Grönwall's inequality: If $v(t) \leq C+A \int_{0}^{t} v(s) d s \ldots$, then $v(t) \leq C e^{A t}$.

Jensen's inequality: $\quad\left(\int_{0}^{t} v(s) d s\right)^{2} \leq t \int_{0}^{t} v^{2}(s) d s$.

