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Abstract

Log-facies classification methods aim to estimate a profile of facies at the well

location based on the values of rock properties measured or computed in well

log analysis. Statistical methods generally provide the most likely classifica-

tion of lithological facies along the borehole by maximizing a function that

describes the likelihood of a set of rock samples belonging to a certain facies.

However, most of the available methods classify each sample in the well log

independently and do not account for the spatial distribution of the facies pro-

file. In this work, a classification method based on hidden Markov models is

proposed, a stochastic method that accounts for the probability of transitions

from one facies to another one. Differently from other available methods

where the model parameters are assessed using nearby fields or analogues,

the unknown parameters are estimated using a statistical algorithm called

the Expectation-Maximization algorithm. The method is applied to two dif-

ferent datasets: A clastic reservoir in the North Sea where four litho-fluid

facies are identified and an unconventional reservoir where four lithological

facies are defined. The application also includes a sensitivity analysis and a

comparison to other statistical methods.
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1 Introduction

Facies classification is one of the key modeling components in reservoir char-

acterization. The distribution of rock properties in the static reservoir model

depends on the facies classification, which is generally achieved from geo-

physical measurements. Reservoir facies are defined at the well location first.

Traditional log-facies classification is based on depositional and sedimento-

logical models. A detailed geological model of the facies strictly depends

on the availability of core samples in the well. However, these models are

difficult to extend to the entire reservoir model for the lack of accurate mea-

surements far away from the well. In order to extend the facies classifica-

tion to the entire reservoir model, log facies should be linked to well logs

data. Generally, in conventional reservoirs, log-facies classification relies on

petrophysical curves performed in formation evaluation analysis (such as,

porosity and mineralogical volumes). However, facies classification, espe-

cially in unconventional reservoirs, should also include elastic and geome-

chanical properties (such as, P- and S- wave velocities, Poisson ratio, Young’s

modulus).

In many practical applications, facies are first defined based on core sam-

ple analysis combined with regional geological models. Then log-facies are

re-classified at the well location using well logs. The accuracy of this re-

classification is lower than the classification obtained from core samples and

geological models, and some of the geological facies can be grouped into a

broader lithological class. For example, in a conventional clastic reservoir,

geological facies such as marine shale and flood plain are generally not dis-

tinguishable from petrophysical curves, because they both show low effective

porosity and high clay content and they can be reclassified simply as shale.

Similarly, distributary channels and crevasse plays show high quartz content

and high effective porosity and could be reclassified as sand.

Different methods can be used to classify well logs data in terms of log-facies.

Simple deterministic methods, such as cut-off methods, could be used to dis-

criminate facies based on a limited number of well logs. For example one

could use the gamma ray log and a cut-off value of 100 API, to discriminate

sand and shale in a clastic reservoir, or use the effective porosity curve and

a cut-off value of 0.2 to differentiate clean sand from shaley sand. However

this method is not suitable in complex geological environments where multi-

ple logs should be used to classify log-facies. If all the main acquired well logs

should be used simultaneously (for instance neutron porosity, density, resis-

tivity and gamma ray) and/or all the petrophysical curves related to the volu-

metric fractions, deterministic methods are not suitable. The first challenge is
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the number of well logs, that does not allow to use cut-off values, since a cer-

tain facies could satisfy the cut-off value for one variable but not for another

property. The second issue is related to the accuracy of the data: as a matter

of fact well log measurements and the curves computed from them can con-

tain errors which could affect the deterministic classification. In order to face

these two issues, statistical methods should be introduced. Several statistical

methods have been presented in literature. Most of these methods belong

to the family of clustering algorithms. Examples of these algorithms are: lin-

ear and non-linear discriminant analysis, k-means clustering, support vector

machine etc (Hastie et al. (2009)). Some of these algorithms require a statis-

tically representative training dataset (supervised learning methods), others

only require initial guess values (unsupervised learning methods). Examples

of unsupervised learning algorithms are neural networks and self-organizing

maps. Bayesian classification can also be used as long as a reliable likeli-

hood function can be estimated from a facies dataset (for example from lab

measurements).

All these methods estimate the most likely facies classification at each loca-

tion in the well log, but fail to account for the vertical continuity in the facies

profile. Each sample in the well log is classified independently from the adja-

cent samples. Therefore unrealistic facies sequences could be created in the

classified profile, for example very thin layers if the well logs are very noisy.

Furthermore some transitions between facies could be more likely to happen

than others, and other transitions could be unfeasible. The simplest example

can be described in a scenario with one facies, sand, and three fluids within it:

gas, oil and water. Suppose focus is on classifying the three litho-fluid facies:

gas sand, oil sand and water sand. If vertical continuity is not accounted for

in the classification, one could obtain water sand on top of gas sand, which

is not physically possible due to the gravity effect.

In this paper, a new approach to log facies classification is proposed where the

vertical correlation of facies along the well profile is introduced through a spa-

tial stochastic model, to ensure realistic vertical sequences along the well pro-

file. The log facies classification we propose is based on three steps: 1) iden-

tification of lithological facies at the well log scale and geological interpre-

tation; 2) selection of well logs data to perform the classification, including

petrophysical, elastic and if available geomechanical properties; and 3) sta-

tistical methodology to classify log-facies based on Expectation-Maximization

(EM) and hidden Markov models (HMM).

The combined use of petro-elastic properties was previously proposed in

Grana et al. (2012) in a Monte Carlo classification workflow, and even though
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the approach allows representing the posterior uncertainty in the classifica-

tion, it does not account for vertical correlation in the profile. Therefore to

improve the available classification methods, Markov models are here intro-

duced. The use of Markov chains to model geological layering was first pro-

posed by Krumbein and Dacey (1969), see also Elfeki and Dekking (2001) for

an overview. A Markov model is a stochastic process where the conditional

probability distribution of future states of the process depends only upon the

present state, not on the sequence of events that preceded it. In this work,

the facies at a given location is considered as a state of the process. Then, the

use of a Markov model implies that the probability of having a given facies

at a given location, depends only on the facies at the location above. This

conditional probability guarantees vertical correlation in the facies profile,

which is an advantage since it avoids artifacts in the classification, such as

one-sample layers or unrealistic facies sequences. Non-physical transitions

can also be avoided in Markov models by setting this transition probability

equal to 0 in the prior model.

When the states following the Markov model, that is the facies profile, are

unobserved and only the related outputs, that is the well logs, are observed,

the process is called a hidden Markov model (HMM). Several applications of

HMMs exist in computer science, speech recognition, signal theory and biol-

ogy, see for example Dymarski (2011) for an overview. Eidsvik et al. (2004)

proposed the use of HMMs for well log inversion into geological attributes

in the same context as considered in this work, and estimated the param-

eters in a fully Bayesian framework requiring Markov chain Monte Carlo

(McMC) calculations. We choose to estimate the parameters of the HMM

using the Expectation-Maximization (EM) algorithm (Dempster and Rubin

1977). Compared to McMC, inference on the parameters using the EM algo-

rithm is much less computer demanding. The particular application of the

EM algorithm to HMMs is also known as the Baum-Welch algorithm (Baum

et al. 1970) and has not been applied to well log inversion before. In the

application it is assumed that the distribution of the log properties used in

the classification is Gaussian within each facies, which results in a Gaussian

mixture model where each component of the mixture corresponds to a litho-

facies. Gaussian mixture have been previously used in a facies classification

context in Grana and Della Rossa (2010) and Xu and Torres-Verdin (2014).

Differently from these applications, the current approach aims to estimate

the unknown parameters of the mixture, as well as the unknown parameters

of the vertical sequence transitions through the EM method.

The mathematical methodology is first introduced, where the main features
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of HMMs are summarized and the application of the EM method to estimate

the HMM parameters is presented. Next, two datasets chosen for the appli-

cation of the presented method are introduced. The first dataset includes

well logs and computed curves from three different domains: petrophysics,

geomechanics and elastic domain, acquired in an unconventional reservoir

(Marcellus shale) in North America. The goal of this application is to classify

the main lithological facies at the well location. A comparison of statistical

classification methods to the application of the presented method to a repre-

sentative sub-set of well logs is presented. The second dataset consists of a

standard set of well logs data, sonic logs, petrophysical logs and curves per-

formed in formation evaluation analysis, acquired in a clastic reservoir in the

North Sea characterized by a complex sequence of thin sand and shale layers.

The main goal of this application is to classify four litho-fluid facies: gas sand,

oil sand, water sand and shale.

2 Methodology

In this section, the statistical methodology used for log facies classification is

presented. First, Markov models are introduced, then HMMs, and finally the

EM method for the estimation of the HMM parameters.

2.1 Introduction to Markov Models and Hidden Markov Models

The unknown facies profile can be represented as a sequence of unknown

states of a process. A stochastic process has the (first-order) Markov prop-

erty if the conditional probability distribution of future states of the process

depends only upon the present state, not on the sequence of events that pre-

ceded it. A discrete-time stochastic process satisfying the Markov property is

known as a Markov chain. A Markov chain is a sequence of random variables

{X t}t=1,...,T with the Markov property, that is for any 1< t ≤ T

p(X t+1 = x |X1 = x1, . . . , X t = x t) = p(X t+1 = x t+1|X t = x t) . (1)

In this work, categorical Markov processes with a discrete-valued state space

only are considered, hence each state X t belongs to one out of N classes, for

example for N possible facies classes. The probability on the right hand side

of Eq.1 is called the transition probability, which is assumed to be stationary

throughout the sequence, that is independent of t. These transition proba-

bilities can be collected in a (N × N) matrix P, called the transition matrix.
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Define the probability of a transition from state i to state j as Pi j , then the

transition matrix can be written as

P =




P11 · · · P1N

... Pi j

...

PN1 · · · PN N




. (2)

Since there are only N possible states, the sum of transition probabilities

from state i to the other states j = 1, . . . , N must be 1, that is each row of

the matrix sums to 1,
∑N

j=1 Pi j = 1. Using the transition matrix it is possible

to calculate, for example, the global proportions of the states, by taking the

limit, limk→∞ Pk.

Consider for example a set of three facies: sand, silt and shale. An example

of transition probabilities can be

sand sil t shale

P =




0.95 0.025 0.025

0.04 0.95 0.01

0 0.05 0.95




sand

sil t

shale

(3)

Rows correspond to sand, silt, and shale at generic depth z, and columns

refer to sand, silt, and shale at depth z + 1 (downward transition). The

matrix is read (by row) as follows: if one knows that at depth z the actual

facies is sand, then at depth z + 1 the probability of finding sand is 0.95,

the probability of finding silt is 0.025, and the probability of finding shale

is 0.025. Similarly for the other rows. In the example the transition from

shale to sand is impossible (probability equal 0). Impossible transitions can

be often found in transition probabilities of litho-fluid classes, to honor the

gravity effects. The terms on the diagonal of the transition matrix are related

to the thickness of the layers: the higher the numbers on the diagonal, the

higher the probability to observe no transition (that is, high probability that

a facies has a transition to itself).

A HMM is a model in which the process being modeled is assumed to follow a

Markov process with unobserved (hidden) states. Generally the Markov pro-

cess itself cannot be observed (in other words the states cannot be measured)

but indirect observations, related to the states, are available. For example,
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facies cannot be measured in the subsurface, but rock properties that depend

on the facies type can be measured, such as porosity for example. Let the

random variable Yt be the observation at time t, which relation to the cor-

responding hidden state at time t, X t , is given by the probability density

function (pdf) of Yt conditioned on X t , p(Yt |X t), denoted the output prob-

abilities. The relation is displayed in Fig.1a, notice the Markov property in

the hidden level and the elementwise relations between the observations and

the hidden states represented by arrows. In this work it is assumed that the

observations are continuous, typically from a Gaussian distribution. The pa-

rameters of a HMM are then: the transition matrix defining the transition

probabilities p(X t |X t−1) and the parameters of the conditional pdf defining

the output probabilities p(Yt |X t).

yT

yT−1

.

.

.

y2

y1

xT

xT−1

.

.

.

x2

x1

(a) HMM

yT

yT−1

.

.

.

y2

y1

xT

xT−1

.

.

.

x2

x1

(b) Model without vertical

spatial dependency

Figure 1: Directed acyclic graph of (a) a standard HMM and (b) a model

without spatial dependency, for example for LDA, QDA and NBM. Here, y =

(y1, . . . , yT ) are observed data (well logs) and x = (x1, . . . , xT ) unobserved

variables (facies). The directed arrows represent dependencies between the

variables.

If the observed variable is a M -dimensional vector distributed according to a

multivariate Gaussian distribution for each state, then for each class there

are M parameters for the vector of means of the observed variables and

M(M+1)/2 parameters for the covariance matrix, which results in N
M(M+3)

2
parameters in total. In the application, if there are N = 3 facies and M = 4
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rock properties (for example, well logs of porosity, clay volume, P-wave ve-

locity, and S-wave velocity), then the hidden Markov model requires the es-

timation of 42 parameters. The assumption that the observed variable is a

M -dimensional vector distributed according to a multivariate Gaussian distri-

bution for each state means that the conditional distribution of the observed

variables given the state is a Gaussian Mixture model (GMM).

The complete set of HMM parameters for a given model by is described by

λ = {A, B,π} where A represents the transition matrix, B represents the pa-

rameters of the output probabilities, and π is the vector of global propor-

tions of the states. These parameters can be easily estimated once the facies

classification is known (supervised learning), for example for the transition

probabilities by counting the number of transitions throughout the facies clas-

sification and normalizing. However, one can still assume a Markov model

even if the facies classification is not known (unsupervised learning). To ob-

tain a facies classification at the well location, the problem constitutes finding

the most probable sequence of states (facies) and the corresponding parame-

ters that maximize their probability. In order to accomplish this task, the EM

method is applied, which for the particular case of HMMs is also called the

Baum-Welch algorithm (Baum et al. 1970).

2.2 The Expectation-Maximization Method for Hidden Markov Mod-
els

As shown in the previous section, HMMs can require the estimation of a

large number of parameters. Several methods have been proposed. In the

log-facies classification methodology presented, the EM method (Dempster

and Rubin 1977) is adopted. The EM method finds the maximum likelihood

estimates of parameters in probabilistic models in the presence of missing

data, that is in this context when the facies classification is unknown. This

method is not completely new in geophysics. Grana and Della Rossa (2010)

introduced this method to estimate the parameters of a Gaussian mixture

model but ignored the spatial correlation of the Markov model in the estima-

tion step. The application of the EM-method to hidden Markov models for

log-facies classification is new.

Denote the complete data by Z = (X , Y ) for which X are the unobserved

(hidden) variables (the facies classification) and Y = y the observations (the

well logs), and denote the parameters to estimate by λ. The EM method is

an iterative procedure that consists in two main steps. The expectation (E)

step computes the expectation of the complete data log-likelihood function
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with respect to the current estimate of the parameters λ∗

Q(λ,λ∗) = EX |Y=y,λ∗
�

log{p(X , Y = y|λ)
�

=
∑

X

log{p(X , Y = y|λ)}× p(X |Y = y,λ∗) . (4)

The maximization (M) step maximizes the expected likelihood computed in

the expectation part

λ = arg max
λ

�
Q(λ,λ∗)
	

. (5)

When certain criteria are fulfilled (Wu 1983), the algorithm converges to the

maximum likelihood solution

bλ= arg max
λ
{p(y|λ)} , (6)

that is the set of parameters that maximize the probability of the observation

under the current model.

If the rock properties are assumed to take a Gaussian mixture distribution,

and the components of the mixture with the facies are identified, then the EM

algorithm can be used as a clustering method to classify the facies. Indeed,

the EM algorithm can be applied to the set of rock properties to estimate the

parameters of the mixture and for each sample one can assign the classified

facies by taking the argument of the maximum of the likelihood of the compo-

nents. However, this application does not account for the spatial correlation

and the transition probabilities. In this work, the EM algorithm is therefor

combined with HMMs, with the Gaussian mixture assumption. The parame-

ters to estimate are: 1) the transition matrix P = {Pi j}i, j=1,...,N , where N is the

number of possible states of the hidden random variable X , and 2) the means

µi and the covariance matrices Σi of the Gaussian probability distributions

bi(y) of the observation variables Y , for each state i = 1, . . . , N

bi(y) := p(y|X = i) = N(y;µ(i)y ,Σ(i)y ) (7)

or, in terms of Gaussian mixture models

b(y) =

N∑

i=1

πiN(y;µ(i)y ,Σ(i)y ) , (8)

where πi are the weights of the components for the mixture which corre-
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spond to the probability of the states. The initial state distribution (for t = 1)

is given by πi = p(X (1) = i) for i = 1, . . . , N . Thus a HMM can be described

by λ = {A, B,π} where A = {P} and B = {µi,Σi}i=1...,N . Baum et al. (1970)

proved that the parameters maximizing the Q-function in the M-step in Eq.5

for a HMM are analytical tractable. In fact the E and M steps are performed

simultaneously after first computing a set of marginal posterior probabilities

for the hidden states (the facies) through a series of forward and backward re-

cursions (Baum et al. 1970). The full algorithm is known as the Baum-Welch

algorithm, and is shown in detail in Appendix A.

3 First Application

In this section the proposed facies classification methodology is applied to

a dataset from an unconventional reservoir in North America. Data are ac-

quired in a well in the Marcellus shale in two different depth intervals: be-

tween 2,072m and 2,195m and between 2,398m and 2,473m. Three differ-

ent lithologies are present: shale, limestone and sandstone; shale is predom-

inant (more than 60% in the two intervals), sand is characterized by very

low porosity (less than 5%). The dataset includes a set of measured well

logs: sonic (P- and S- wave velocity Vp and Vs) and petrophysical (neutron

porosity, density, gamma ray and resistivity). A standard formation evalua-

tion analysis has been performed in order to compute the main petrophysical

curves: total porosity φt , and volumetric fractions of lithological components

of the solid phase (volumes of clay, quartz and calcite: Volcla y , Volqua and

Volcal). Finally a set of elastic and geomechanics attributes such as Young’s

modulus E, Poisson ratio Pr , and photoelectric index pe, is also available.

The well log data are displayed in Fig.2. Two different intervals of the well

log profile are considered, an upper part (2,072− 2,195m) and a lower part

(2,398− 2,473m), see Fig.2.

For this application, four lithological facies are defined: 1 sandstone ce-

mented with calcite, 2 sandstone cemented with quartz, 3 limestone and

4 shale, represented by the colors white, light-grey, dark-grey and black re-

spectively. These facies have been characterized using core samples from the

lower part of the well log profile. A stratigraphic profile for the lower interval

derived from depositional and sedimentological models is also available and

identifies three main layers: a thick shaley layer on top, a limestone layer in

the middle, and a tight cemented sandstone layer on the bottom split into

a quartz-filled layer and a calcite-filled layer, see Fig.2. However the strati-

graphic profile does not show local heterogeneities and thin layers that are
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Figure 2: Set of well logs for the upper (top) and lower (bottom) interval for

the first application. For the lower interval, a reference stratigraphic facies

profile is also displayed.

visible in petrophysical curves in well logs. The facies classification method

is therefor applied to obtain a more detailed log-facies classification.

The application of the method is divided into three parts: 1) Classification

of facies with given proportions, transition probabilities and output prob-

abilities, that is supervised learning; 2) Classification of facies with given

output probabilities and estimation of proportions and transition probabili-

ties, that is partly unsupervised learning; and 3) Classification of facies and

estimation of proportions, transition probabilities and output probabilities,

that is fully unsupervised learning. In the first part, all the parameters of

the HMM are thus assumed to be known and the classification method is

applied using these parameters. The facies classifications are given by the

maximum a posteriori (MAP) prediction which is the most probable classifi-

cation under the given models. In the second part, the output probabilities

only are assumed to be known and estimation of the most likely classifica-

tion together with proportions and transition probabilities is performed si-

multaneously. In the last part, the most likely classification and all the HMM

parameters are estimated simultaneously. For all three examples, the esti-

mation and classification is first performed in the lower part, where the re-
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sults can be compared to the stratigraphic profile. Furthermore, the same

method is applied to the upper part, applying the parameter estimates from

the lower part, to obtain a consistent log-facies classification in both depth

intervals. The classification is also compared applying a) the petro elastic

well logs {Vp, Vs ,φt , Volcla y , Volqua , Volcal} only, b) the geomechanical well

logs {Pr , E, pe} only and c) all well logs.

In the last part of this work, a sensitivity analysis on the number of well logs

that should be used in the classification is performed, in order to reduce the

dataset to a set of relevant well logs. Finally, the results of the application

are compared to traditional statistical classification techniques, such as naive

linear and non-linear (quadratic) discriminant analysis and the Gaussian mix-

ture model without spatial correlation.

3.1 Classification of Facies with Given Proportions, Transition Prob-
abilities and Output Probabilities

For the first part of the application, the stratigraphic profile is used to empir-

ically estimate all the parameters of the HMM, hence a supervised learning

case. The empirical proportions of the facies are estimated from the global

proportions in the stratigraphic profile π̂s = (0.10.0.12,0.12,0.66), which is

chosen as initial distribution, that is π̂= π̂s. The prior model transition prob-

ability parameters are estimated by an empirical counting process throughout

the stratigraphic profile

P̂ =




1 0 0 0

0.02 0.98 0 0

0 0.02 0.98 0

0 0 0.01 0.99




. (9)

Notice the high occurrence of zero-probabilities in the estimated transition

matrix due to the lack of transitions in the reference facies. For example,

calcite-cemented sandstone (white) act as an absorbing state, that is if a tran-

sition into it occurs the process can never have transitions out of it again.

However in order to achieve a higher resolution classification and to achieve

a more flexible model by avoiding absorbing states, all the entries are man-

ually set to be non-zero because geologically none of these transitions are

impossible. In the following cases, with unknown stratigraphic profile, a min-

imum probability of 0.01 is similarly set in each entry before running the EM
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algorithm. The adjusted transition matrix estimate is

P̂ad j =




0.97 0.01 0.01 0.01

0.02 0.96 0.01 0.01

0.01 0.02 0.96 0.01

0.01 0.01 0.02 0.96




. (10)

Furthermore, due to the large thickness of the layers in the stratigraphic log,

the probabilities on the diagonal might still be too large. Finally, the Gaussian

likelihood mean and covariance matrix parameters are estimated by standard

ML methods for each facies. In other words, the well log data y is seper-

ated by stratigraphic facies into N = 4 subsets {y(1), . . . ,y(N)} with respective

dimensions {n1, . . . , nN}. The maximum likelihood parameter estimates for

each class l ∈ {1, . . . , N} are then given by

µ̂l =
1

nl

nl∑

i=1

y
(l)

i
, Σ̂l =

1

nl − 1

nl∑

i=1

�
y
(l)

i
− µ̂l

��
y
(l)

i
− µ̂l

�T
. (11)

The resulting Gaussian likelihood model for the output probabilities is dis-

played in Fig.3 by pairwise 90% confidence regions separated by facies. In

the pairwise plot, diagonality of the regions indicate correlation between vari-

ables. In addition, if there is almost one-to-one correspondence between vari-

ables it is represented by very narrow region width, which indicate that the

variables are essentially the same (up to some linear scale). Notice that this

is the case for the pairs a) Vp and E and b) Volqua and pe, hence one could

choose only one log out of each of these pairs for the classification. The

likelihood models displaying the most significant separation between the fa-

cies, with significant horizontal separation between the region centers, are

for the well logs Vp, φt , Volcla y and E. Notice that the Gaussian pdfs in

some plots cover unrealistic negative regions, for example negative volumet-

ric fractions, hence the assumption of a Gaussian likelihood models might

not be best suited for these well logs. The Gaussianity is here chosen to be

kept however, due to its superior analytical tractability. Gaussian pdfs should

be then truncated to avoid non-realistic values.

The HMM facies MAP classifications with plug-in parameter estimates are

given in Fig.4 for both the upper and lower part. The MAP predictions have

coarse layers as expected because of the Markov chain prior model. For the

lower part, with the reference stratigraphic profile, all three classifications are
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Figure 3: 2D plots of 90% confidence regions of the Gaussian likelihood

model for the output probabilities for each facies class estimated empirically.

similar to the reference stratigraphy. In the upper part, in which there is no

reference stratigraphic profile, notice that the MAP prediction applying the

geomechanical well logs only has significantly coarser layers than the other

two, and also that the classification at depth about 2,072m-2,145m differs

significantly.

3.2 Classification of Facies with Given Output Probabilities and Es-
timation of Proportions and Transition Probabilities

For the second part of the application, the Gaussian likelihood parameters

estimated in the first part is used, while all the prior parameters of the Markov

model are reestimated assuming the facies to be unknown, which is denoted

a partly unsupervised learning case. The parameters are estimated by the
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Figure 4: Comparison of the MAP predictions for case 1.

Baum-Welch algorithm in Appendix A, in which the likelihood parameters

are not updated but are set. The EM-algorithm is run with 100 iterations to

ensure convergence (in practice all runs converged in less than 10 iterations).

The estimation is performed for the three well log sets mentioned, that is for

the petro elastic well logs, the geomechanical well logs and all well logs with

respective superscripts p, g, a. The estimated transition matrices are

P̂p =




0.97 0.01 0.01 0.01

0.02 0.96 0.01 0.01

0.01 0.01 0.95 0.03

0.01 0.01 0.01 0.97




, P̂ g =




0.97 0.01 0.01 0.01

0.02 0.96 0.01 0.01

0.01 0.02 0.92 0.05

0.01 0.01 0.02 0.96




P̂a =




0.97 0.01 0.01 0.01

0.02 0.96 0.01 0.01

0.01 0.02 0.95 0.02

0.01 0.01 0.01 0.97




. (12)
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The estimated transition matrices resemble the reference matrix in Eq.(9)

with large probabilities along the diagonal. The high values on the diagonal

of the matrix combined with the low values outside the diagonal show the

presence of thick layers (high probability of transitions from one facies to

itself) and few transitions between different facies.

The corresponding HMM facies MAP classifications are given in Fig.5. For

the lower part, all three classifications are again similar to the stratigraphic

profile. This is consistent with the information from depositional models and

core photos where there was observed a higher heterogeneity in the upper

part.
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Figure 5: MAP predictions for case 2.

3.3 Classification of Facies and Estimation of Proportions, Transi-
tion Probabilities and Output Probabilities

For the third part of the application, all parameters are reestimated by the

Baum-Welch algorithm in Appendix A, assuming the facies stratigraphy to be

unknown, hence a fully unsupervised learning case. The estimated transition
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matrices are

P̂p =




0.93 0.02 0.04 0.01

0.02 0.96 0.01 0.01

0.03 0.01 0.90 0.06

0.01 0.01 0.02 0.96




, P̂ g =




0.97 0.01 0.01 0.01

0.02 0.95 0.01 0.02

0.01 0.03 0.90 0.06

0.01 0.01 0.02 0.96




P̂a =




0.97 0.01 0.01 0.01

0.01 0.49 0.49 0.01

0.03 0.01 0.91 0.05

0.01 0.01 0.02 0.96




. (13)

Notice again the large diagonal probabilities, however for this unsupervised

case there is more uncertainty present, hence some of the off-diagonal el-

ements are a bit larger than for the reference transition probability matrix

in Eq.(10). The Gaussian likelihood model for the output probabilities esti-

mated by the EM algorithm is presented in Fig.6 by pairwise 90% confidence

regions for the respective well log sets. The regions resemble the empirical

estimates in Fig.3 quite reliably.

The HMM facies MAP classifications are given in Fig.7 displaying more rapid

transition than for the previous cases due to being a fully unsupervised learn-

ing case. For the lower part, the classification from the petro elastic logs and

all logs are poorer, the MAP prediction from all well logs in particular does

not recognize the quartz-filled sandstone layer at all. The classification from

the geomechanical logs is however reliable, being the smallest subset of well

logs. In the upper part, where it is speculated that the absence of sandstone is

due to the lack of visible evidence from core photos, all classifications provide

a satisfactory results.

3.4 Sensitivity Study

For this part, a sensitivity analysis is performed in the lower well part on the

number of well logs that should be used in the classification. Classification of

facies and estimation of all parameters, according to the fully unsupervised

case of the previous part, is performed for all (511) subsets of the nine well
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Figure 6: 2D plots of 90% confidence regions of the Gaussian likelihood

model for the output probabilities for each facies class estimated by EM.



First Application 21

D
e

p
th

 (
m

)

MAP
petro

2400

2410

2420

2430

2440

2450

2460

2470

MAP
geo

MAP
all

Reference
stratigraphy

(a) Lower part

D
ep

th
 (m

)

MAP
petro

2080

210

2120

2140

2160

2180

MAP
geo

MAP
all

(b) Upper part

Figure 7: MAP predictions for case 3.

logs. As a measure of fit, the predictive performance is evaluated by the

test statistics: location-wise mismatch ratio c1, mismatch in total number

of transitions between different facies layers c2 and difference in estimated

transition matrices c3. These are defined for ci ∈ [0,1], i = 1,2,3 as

c1 =
1

T

T∑

t=1

I( x̂ t = x t) (14)

c2 = 1−
1

100
min{100, |ρ(x̂)−ρ(x)|} (15)

c3 = 1−
1

N/2
min

(
N/2,

N∑

i=1

|P̂ii − P̂
ad j

ii
|

)
(16)

where x = (x1, . . . , x t) is the reference stratigraphy, x̂ = ( x̂1, . . . , x̂ t) the MAP

prediction, ρ(·) the number of layer transitions in its input, P̂ the transition

matrix estimated by the EM algorithm and P̂ad j the reference transition ma-

trix in Eq.(10). As there are only three transitions between different facies

layers in the reference stratigraphy, the statistic c2 will favor predictions with

few such class transitions. Observe that c3 is defined from the estimated

transition matrices diagonal elements only, and can hence be regarded as a

measure of how well the thickness of the facies layers are predicted. For both

c2 and c3 upper limits are set, that is a maximum on mismatch in number
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of total transitions and on transition matrix diagonal. All three statistics be-

come one for a perfect match, when the MAP prediction is identical to the

reference facies stratigraphy. The three statistics are given weights 0.5, 0.25

and 0.25 respectively, hence most emphasis is on the facies mismatch. The

set of the well logs that maximizes the corresponding weighted sum of the

test statistics

csum = 0.50c1 + 0.25c2 + 0.25c3 (17)

will be defined as the best subset of logs.

The ten best subsets of well logs in this study are given in Table 1, for which

the best subset was found as {Vp, Vs , Volcla y}. Notice also that the small sub-

set of {Vs , Volcal}was actually third best, reducing the needed number of well

logs from nine to two. The sonic S-wave well log Vs has most occurrences,

appearing in all but two of the ten best subsets, while the sonic P-wave well

log Vp appears only once, however in the best subset. It therefore seems that

only one of the two sonic logs is needed to make a reliable prediction, as

they are highly correlated. It should also be pointed out that the resolution

of sonic logs is generally lower than the resolution of petrophysical logs and

petrophysical computed curves. The five best subset MAP predictions are dis-

played in Fig.8. Notice that the classifications in the upper part of the well

have thicker layers than the previous classifications in cases 1 through 3. For

the upper part, some quartz-filled sandstone layers are predicted for subsets

(C) through (E).

It might seem counterintuitive that smaller subsets, even as small as two

well logs only, have better predictive performance than the full set of well

logs, as taking advantage of more information should provide more reliable

results. Reasons for the opposite can be: the model is not perfect, that is

there are model errors, for example the Gaussian assumption is probably not

best suited for all well logs, also there is model parameter uncertainty as

the estimates are used as plug-in values only. Too much information thus

contains much noise, that is for the current model some of the well logs

might act more as noise than being productive. Besides, different logs can

be affected by different errors, resulting in contradictory information. This

might also be the reason to why the smallest subset in case 3, with the three

geomechanical well logs only, has a more reliable MAP prediction than for the

others, see Fig.7. A more sophisticated hierarchical Bayesian model could

account for model parameter uncertainty by assigning prior models to the

parameters, also output probability functions other than the Gaussian could

be chosen, however this is not considered further in this study.
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Well logs csum

Vs, φt , Volcla y , Volqua 0.9302

Vs, φt , Volcla y , Poisson, pe 0.9307

Vs, Volqua, Volcal , Poisson 0.9310

Vs, φt , Volqua, Volcal , Poisson 0.9313

Vs, Volcla y , Poisson, pe 0.9344

φt , Poisson, Young 0.9352 (E)

Vs, φt , Poisson 0.9384 (D)

Vs, Volcal 0.9389 (C)

Volcla y , Volcal , Young 0.9396 (B)

Vp, Vs, Volcla y 0.9415 (A)

Table 1: Sensitivity study results: The ten best subsets.
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Figure 8: MAP predictions from the sensitivity study for the five best subsets

(A) through (E) of Table 1.
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3.5 Comparison to Other Statistical Classification Methods

In the last part, the facies predictions from the HMM are compared to that of

three other statistical classification techniques (Hastie et al. (2009)), namely

linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)

and a naive Bayesian model (NBM) (Li and Anderson-Sprecher 2006). All

three comparison methods neglect spatial correlation, see the graph in Fig.1b.

LDA and QDA are regression techniques and correspond to classification from

the Gaussian output probabilities, as in Eq.(7), only, also for LDA equal co-

variance between the Gaussian class functions is assumed. NBM is a Bayesian

model without spatial correlation, where the prior model on the facies for

each depth is set to the global proportions. The HMM predictions are thus

expected to be coarser than those of the three other methods, as spatial corre-

lation and thicker layers are enforced through the Markov chain assumption,

see Fig.1a.

In the predictions it is applied the best subset {Vp , Vs, Volcla y} as found in the

previous part, assuming that all parameters are known (corresponding to the

supervised case 1). The MAP predictions from the four classification methods

are given in Fig.9. All classifications have quite reliable location-wise match,

however for NBM, QDA and especially LDA some false thinner layers are pre-

dicted. In the lower part, although some of the interbedded layers within the

main shale layer could be realistic, there are several misclassification of thin

layers, especially in the limestone. Hence, incorporating spatial dependency

in the facies through the Markov property seems the approach providing the

best result. In the upper part, LDA clearly misclassify the main limestone

layer at the bottom of the interval, whereas QDA and NBM underestimates

the spatial continuity of the layer.

4 Second Application

In this section the proposed facies classification methodology is applied to

a conventional reservoir dataset in the North Sea in the susurface depth in-

terval between 1,797m and 1,933m. The geological environment is a con-

ventional clastic reservoir with three fluids: gas, oil and water. The well

log dataset contains standard wireline logs including sonic and petrophysical

data, and computed curves from formation evaluation analysis such as poros-

ity, mineralogical fractions and saturation curves (water, oil and gas satura-

tion sw , so, sg), presented in Fig.10. From well measurements it is known that

the contact between gas and oil occurs at depth about 1,870m, see Fig.10.
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Figure 9: MAP predictions from the comparison study.

For this application, four litho-fluid facies are defined: gas-filled sandstone,

oil-filled sandstone, water-filled sandstone and shale represented by the col-

ors white, light-grey, dark-grey and black respectively. The gas cap at the top

of the reservoir is about 20m thick and is located at the top of an anticline

structure characterized by high-porosity sandstone. The lower part of the

interval includes thin layers of oil sand and water sand alternated to shale

layers. In this application, it is assumed that all parameters are unknown,

as there is no reference stratigraphy, hence it is a fully unsupervised case to

which the Baum-Welch algorithm is applied.

In this case there are gravity effects present, with impossible transitions

downwards, that is gas-filled sandstone is never below oil- and water-filled

sandstone and oil-filled sandstone is never below water-filled sandstone. These

restrictions are enforced in the Markov model transition probability matrix P

by setting the current probabilities to 0. A nice property of the Baum-Welch

algorithm is that 0-probabilities in P are kept when updating, hence one only

needs to set these probabilities to 0 in the initial guess on P. When run-

ning the EM-algorithm, the minimum non-zero transition probability is set to

0.001.

Clearly the fluid discrimination can be achieved by using saturation proper-

ties only, however saturation curves can be noisy and uncertain, because they

are computed from resistivity measurements. Another problem with the use
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Figure 10: Well log dataset for the second application example.

of saturation curves in the classification is related to the applicability of the

classification to the entire reservoir where saturation information is not avail-

able. A first sensitivity analysis on the use of saturation logs is performed to

determine the impact on the facies model. Then, the four litho-fluid facies

are classified based on the full set of parameters, then classification from the

elastic properties only. The goal is to assess the value of information of sonic

logs in the classification. As a matter of fact, after the calibration at the well

location, litho-fluid classification is generally applied to seismic data where

only elastic properties, such as velocities, are available. Therefore the facies

discrimination based on elastic properties is crucial in seismic reservoir char-

acterization, even though the best classification at the well location is gen-

erally achieved through petrophysical properties. For each of the two cases

under investigation, full set of well logs (case 1) and petrophysical properties

only (case 2), the proposed methodology is applied to estimate the HMM pa-

rameters and the most probable facies profile (cases 1a and 2a); then these

parameters are used to estimate the most probable facies profile from elastic

properties only (cases 1b and 2b). Although seismic data and inverted seis-

mic attributes are not available for this case study, the facies classification

from elastic properties only is a reliable test to assess the feasibility of the

application.
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4.1 Litho-Fluid Classification with Sensitivity to Saturation Logs

The first classification is performed by applying the Baum-Welch algorithm to

the set of petroelastic curves. In Fig.11 the results obtained under three differ-

ent settings are shown: petroelastic logs assuming the gas-oil contact known,

petroelastic logs assuming the gas-oil contact unknown and entire set of well

logs including saturation curves assuming the gas-oil contact unknown. For

the first setting, the well log interval is divided in two subintervals: above

and below the contact and the proposed methodology is applied by assuming

three facies {gas-filled sandstone, water-filled sandstone, shale} above and

{oil-filled sandstone, water-filled sandstone, shale} below. By comparing the

results of the first two settings it is concluded that the contact can be auto-

matically detected (Fig.11). This result is speculated to occur due to the clear

petro-elastic signature of gas sand: sand filled by gas are characterized by low

Vp/Vs ratio and low density; furthermore sand at the top of the reservoir also

show higher porosity and lower clay content compared to the lower part.

However the discrimination between water sand and oil sand and between

water sand and shale is less satisfactory (Fig.12) due to the similar response

of these facies. As previously stated, if the saturation logs are included in the

classification, the discrimination between fluids clearly improve (Fig.11, last

plot), however the final classification almost exclusively depends on the data

whereas the spatial model becomes secondary.
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Figure 11: MAP predictions for three subsets of logs: petroelastic properties

(assuming the gas-oil contact known); petroelastic properties (assuming the

gas-oil contact unknown); all logs (assuming the gas-oil contact unknown).
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Figure 12: 2D plots of 90% confidence regions of the Gaussian output proba-

bilities for each facies class estimated by EM for the second application (petro-

physical dataset).

4.2 Litho-Fluid Classification From the Full Set of Well Logs

The inversion and estimation is here performed from the full set of well logs

chosen as {Vp , Vs,ρ,φt , Volcla y , sg , so}, denoted Case 1a). The estimated tran-

sition matrix is:

gas oil water shale

P̂ =




0.961 0 0 0.0389

0 0.973 0.026 0.001

0 0 0.896 0.104

0.072 0.098 0.062 0.768




gas

oil

water

shale

(18)

Notice the estimated 0-probabilities in P12 and P13, hence gas-filled sand-

stone will only have transitions into gas-filled sandstone or shale. Oil-filled

sandstone will have almost exclusively transitions into oil- or water-filled

sandstone. The Gaussian likelihood model for the estimated outcome prob-

abilities is presented in Fig.13a. Notice that the well logs ρ and Volcla y has

the most significant separation between the litho-fluid facies. Notice also

the estimated negative correlation between φt and ρ, with increasing den-

sity leading to decreasing porosity as expected. Finally it is pointed out that

the distributions of fluid saturations are represented by degenerate Gaussian

pdfs due to the non-Gaussian behavior of these properties, characterized by

distribution peaks at the extreme values of the range (that is saturation close



Second Application 29

to 0 and 1). A normal score transformation could be introduced to better

describe this behavior. The EM algorithm at certain locations mix the two

classes shale and water sand. The main reason may be the similar elastic

properties, in terms of density and velocity, of this clay type compared to

higher porosity sandstone filled by water.
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Figure 13: 2D plots of 90% confidence regions of the Gaussian likelihood

model for the output probabilities for each facies class estimated by EM for

the second application.
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The HMM facies MAP classification for Case 1a) is given in Fig.14. The match

between the predicted gas- and oil-filled sandstone layers and the gas and oil

saturation well logs is reliable, that is gas is only present in the upper section

while oil is only present in the lower section. Notice that the enforced gravity

effects are honored, due to the 0-probabilities in the transition matrix, thin

shale layers are enforced between some layers of hydrocarbon- and water-

filled sandstone. Because of the possible mix between water-filled sandstone

and shale some of these may be misspecified by each other, for example shale

is highly under-represented in the lower section compared to the base case

MAP. The hydrocarbon classes of most interest seem to be reliably predicted,

however the predicted oil-filled sandstone layers are thicker than in the base

case MAP.
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Figure 14: The MAP classifications for cases 1a-b) and 2a-b) for the second

application.

For Case 1b), the inversion is performed based on the elastic well logs {Vp, Vs ,ρ}

only, with all initial parameters set to the estimates from Case 1a). The cor-

responding facies MAP prediction is presented in Fig.14, and is quite similar

to the MAP prediction from the full set of well logs. For this case, there are

a few thin oil-filled sandstone layers present also above the contact, but no

gas-filled sandstone layers are present below the contact. Hence inversion

from the elastic well logs only gives a reliable facies prediction, as is the case

of seismic data.

For Case 1, a comparison to linear discriminant analysis (LDA) is also per-
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formed, which is the simplest model out of the three comparison models

considered in the first application. The MAP prediction comparisons for Case

1a) are displayed in Fig.15a and are quite similar between the classification

methods. For this application, the data (through the likelihood model) there-

fore seem to dominate the prior model. For the HMM however, thin shale

layers are enforced between water-filled sandstone and oil-filled sandstone

downwards as mentioned, to avoid impossible transitions due to gravitational

effects. These shale layers should be thicker, parts of the water-filled sand-

stone layers next to it might be shale as the two classes are mixed. The MAP

prediction comparisons for Case 1b) are displayed in Fig.15b. This MAP pre-

diction for LDA has more rapid layer transitions than for the HMM, hence the

spatial Markov prior model has more weight. When removing the saturation

logs in particular, the data do not seem to dominate the prior model as much.

Also, the LDA classification has some false gas-filled layers also below the

contact.
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Figure 15: Comparison of the MAP predictions between LDA and HMM in

the second application computed computed from (a) the full set of well logs

and (b) the elastic well logs only.

4.3 Litho-Fluid Classification From Petrophysical Properties

The inversion and estimation is here performed from the petrophysical set of

well logs {φt , Volcla y , sg , so} only, denoted Case 2a). The estimated transition
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matrix is:

gas oil water shale

P̂ =




0.962 0 0.001 0.037

0 0.973 0.026 0.001

0 0 0.899 0.101

0.076 0.105 0.067 0.752




gas

oil

water

shale

(19)

The estimated transition matrix is very similar to the estimate of Eq.(18) from

the full set of well logs. The Gaussian likelihood model for the estimated

outcome probabilities is presented in Fig.13b. Notice again the degenerate

Gaussian pdfs of the fluid saturation.

In Case 2b), the inversion and estimation is performed from the elastic well

logs {Vp, Vs ,ρ} only, similarly to Case 1b), but keep the estimated transition

matrix in Eq.(19), hence estimating the likelihood parameters only. The Gaus-

sian likelihood model is presented in Fig.13c. Again, ρ has the most signifi-

cant litho-facies separation.

The HMM facies MAP predictions for Case 2a) and b) are given in Fig.14. For

both classifications, gas-filled sandstone is only present above the contact as

desired. In the classification for the elastic well logs of Case 2b), gas-filled

sandstone is slightly under-represented, and again some oil-filled sandstone

layers are present above the contact. Both MAP predictions however resem-

ble the MAP prediction from all well logs in Case 1a) reliably.

5 Discussion

Several methods, deterministic and statistical algorithms, can be used in fa-

cies classification. The previous applications show that different methods can

provide different results in terms of facies discrimination. Furthermore, the

same method can provide different results when different assumptions are

introduced. For example, the same method applied to two different set of

well logs from the same well, can provide a different classification. The only

reliable approach to assess the validity of the facies classification is through

an extensive analysis of core samples and integrated study combining quan-

titative log interpretation, rock physics, sedimentology and stratigraphy and

laboratory measurements. The goal of this paper is to show the necessity of
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introducing a spatial statistics model to represent the vertical continuity of

the facies profile and quantify the transitions between different facies.

Once the spatial model is known and the transition probabilities are deter-

mined, the most probable classification can be estimated. In most of the

real case applications, the spatial model is not known. The Baum-Welch al-

gorithm can be used to estimate the most probable classification and the

underlying parameters of the spatial model and the rock physics likelihood

simultaneously. However it is pointed out that this inverse problem of facies

classification is very challenging to solve due to the high number of unknown

parameters and the uncertainty and noise in data measurements. Therefore

the solution is not necessarily unique and multiple solution can equally honor

the same measured dataset. The Baum-Welch algorithm provides the most

likely facies profile by maximizing a likelihood function. This method relies

then on the quality of the measured dataset.

In case studies where an extensive dataset in terms of well logs, laboratory

measurements, core samples and prior geological information is available,

the spatial continuity model as well as the other parameters of the HMM can

be assumed set from the available prior information and the Baum-Welch al-

gorithm can be used to predict the most likely facies classification with the

given prior parameters (as shown in the first application on the first dataset).

The advantage of this approach is that prior geological information can be

included in the methodology. For example, when several wells are available

in the same field, the overall facies proportions could be assumed from the

reservoir model and the transition probabilities could be determined from

the knowledge of the layer thicknesses and stratigraphic sequences of the

reservoir model. The proposed method can then be applied for the log-facies

classification at the well classification with the previously assessed parame-

ters. These parameters are always the results of assumptions and models,

therefore a sensitivity analysis of the effect of these assumptions should be

performed after the classification.

Finally, the selection of the dataset to use in the facies classification is an-

other key aspect of the method. In the first application, a statistical method

to determine the optimal dataset to be used in the classification was shown.

From the statistical point of view, the optimal dataset is the one that allows

obtaining the best discrimination between the assigned facies. However, in

reservoir studies, the dataset to be used in the classification should also ac-

count for data availability, quality of the data and goal of the classification.

Some of the well logs have lower resolution or are noisier than others; other

logs can be available only at limited well locations. The second application
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also shows that some of the unknown parameters can be estimated from the

full dataset, but the classification should then be applied only to a subset of

logs, in order to be extended to the entire reservoir model where only elastic

properties are available.

6 Conclusion

In this paper, a new methodology to classify log-facies, lithological or litho-

fluid types, from well log data is presented. The proposed methodology

aims to estimate log-facies based on common rock, fluid and elastic prop-

erties but also to mimic realistic vertical distributions. The method is based

on two statistical tools: hidden Markov chain models and the Expectation-

Maximization algorithm. The introduction of hidden Markov models allows

us to introduce constraints on facies transitions. The transition probabilities

are then combined with the likelihood function of rock samples to belong

to a certain facies given its rock and fluid properties. Since hidden Markov

models require a set of parameters for the transition probabilities as well as

for the parametric likelihood functions, the Expectation-Maximization algo-

rithm is applied to automatically estimate those parameters from well logs,

the particular algorithm known as the Baum-Welch algorithm. The main

advantage of this method is the ability of describing realistic geological se-

quences as shown in the presented applications. Furthermore, the method

is flexible and can be combined with prior geological information such as

overall proportion or likelihood functions estimated from petrophsyical and

rock physics models. In other applications, some of the parameters could be

assumed based on regional geological information or analogues from nearby

fields. The so-obtained classification can then be extended to the entire reser-

voir field by using traditional Markov chain methods based on the likelihood

functions estimated at the well locations.
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Appendix A: The Baum-Welch Algorithm

Let forward probabilities α indicate conditioning on data up to the current

step, that is αi(t) = p(X t = i|y1, . . . , yt) and αi j(t) = p(X t−1 = i, X t =

j|y1, . . . , yt) while backwards probabilities γ indicate conditioning on all the

data, that is γi(t) = p(X t = i|y1, . . . , yT ) and γi j(t) = p(X t−1 = i, X t =

j|y1, . . . , yT ). The Baum-Welch algorithm according to Baum et al. (1970)

follows, with multivariate Gaussian likelihood models φ(y;µ,Σ) for each

state.

ALGORITHM: BAUM-WELCH ALGORITHM

Set initial parameters λ∗ = {A∗, B∗,π∗}where A∗ = {P∗} and B∗ = {µ∗i ,Σ∗i }i=1...,N .

Iteratively do:

Forward recursions:

• Initiate:

C1 =
h∑N

i=1φ(y1;µ∗i ,Σ
∗
i )×π

∗
i

i−1

αi(1) = C1×φ(y1;µ∗i ,Σ
∗
i )×π

∗
i , i = 1, . . . , N

• Iterate for t = 2, . . . , T :

Ct =
h∑N

i=1

∑N
j=1φ(yt ;µ

∗
j
,Σ∗

j
)× P∗

i j
×αi(t − 1)
i−1

αi j(t) = Ct ×φ(yt ;µ
∗
j ,Σ
∗
j )× P∗i j ×αi(t − 1) , i, j = 1, . . . , N

α j(t) =
∑N

i=1αi j(t) , j = 1, . . . , N

Backward recursions:

• Initiate:

γ j(T ) = α j(T ) , j = 1, . . . , N

• Iterate for t = T, . . . , 2:
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γi j(t) =
αi j(t)

α j(t)
× γ j(t) , i, j = 1, . . . , N

γi(t − 1) =
∑N

j=1 γi j(t) , i = 1, . . . , N

Update the parameters:

• Update the parameters λ by

πi = γi(1) , i = 1, . . . , N

Pi j =

∑T
t=2 γi j(t)∑T
t=1 γi(t)

, i, j = 1, . . . , N

µi =

∑T
t=1 yt×γi(t)∑T

t=1 γi(t)
, i = 1, . . . , N

Σi =

∑T
t=1(yt−µi )(yt−µi)

′×γi(t)∑T
t=1 γi(t)

, i = 1, . . . , N

• Set λ∗ = λ

After convergence is reached, the final parameter set λ is the maximum like-

lihood estimate according to Eq.6. Moreover, the maximum a posteriori pre-

diction of the categorical sequence x is obtained from the backward probabil-

ities {γi(1),γi j(2), . . . ,γi j(T )}i, j=1,...,N through the Viterbi algorithm (Viterbi

1967).


