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Abstract

The filtering problem, or dynamic data assimilation problem, is studied for
linear and nonlinear systems with continuous state space and over discrete
time steps. The paper presents filtering approaches based on the conjugate
closed skew normal probability density. This distribution allows additional
flexibility over the usual Gaussian approximations. With linear dynamic
systems, the filtering distribution can now be computed in analytical form.
With nonlinear dynamic systems, an ensemble-based version is proposed,
fitting a closed skew normal distributions at each updating step. Numerical
examples discuss various special cases of the methods.
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1. Introduction

In this paper we consider the filtering problem under non-Gaussian and
non-linear modeling assumptions. The challenge is to characterize the proba-
bility distribution of state variables over time, given the available information
at that time instant. The underlying model comes from a physical system
and is represented as a set of differential or difference equations, known as
the process model. At each (discrete) time step sensors measure the state
variable directly or indirectly, and we are interested in assimilating these
data with the knowledge imposed by the process model and all previous
measurements.
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The history of the filtering problem goes back more than 50 years, when
Kalman proposed his famous filtering solution for linear dynamical systems
in optimal control literature (Kalman, 1960). The Kalman filter (KF) has
shown extremely useful, but has strict assumptions about linearity and Gaus-
sian noise. The Extended Kalman filter (EKF) is an extension handling non-
linearities (Jazwinsky, 1970), but if the nonlinearity of the system is high,
this first order approximation diverges. Second order KF variants have also
been proposed, but they may have similar challenges. Moreover, we need
to calculate the Jacobian and Hessian of the system equations which may
not be feasible. For instance, these derivative expressions are rarely available
from implicitly formulated process models or black box models.

Particles filters (PF) were proposed to handle general distributions by
Monte Carlo sampling. These approaches can approximate any distribu-
tion when the number of particles goes to infinity (Doucet et al., 2001). In
practical systems there are limits in the available computation time and con-
sequently the number of particles/samples which can be used. Albeit very
popular in many applications, particle filters may suffer from sample degen-
eracy when the system dimension increases.

Ensemble Kalman filter (EnKF) was introduced as a sampling represen-
tation for very high dimensional systems, see e.g. Evensen (2001), Sakov and
Oke (2008) and Evensen (2009). It incorporates the nonlinear process model,
whereas a Gaussian approximation is used for the updating with respect to
new measurements. This approach has been very useful for practical appli-
cations, but the filter solution may be biased or underestimate uncertainty.
Gaussian mixture filters have been suggested to get benefits from both PF
and EnKF, see e.g. Stordal et al. (2010) and Rezaie and Eidsvik (2012).

In this paper we introduce a new filter which captures skewness in the
filtering solution. It is easy to implement and some of the mentioned filters
are special cases of the suggested approach. The filter is based on the closed
skew normal (CSN) distribution, which allows analytical solutions under cer-
tain modeling assumptions. This family of filters is named the closed skew
normal Kalman filter (CSNKF).

The skew normal (SN) and CSN distribution are extensions of the normal
or Gaussian distributions, see e.g. Azzalini and Dalla-Valle (1996) and Gupta
et al. (2004). Skewness is incorporated by adding new parameters to the
traditional Gaussian formulation (Genton, 2004). The CSN distribution has
some useful properties similar to those of the Gaussian distribution, such
as closedness under linear conditioning. Thus, we can extend the previous
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Gaussian-based filters by introducing the CSN distribution into the filtering
problem.

A skewed version of the KF for linear systems was proposed by Naveau
et al. (2005). They defined the filter in an extended state space model.
Our proposed algorithms work for linear and nonlinear systems in a unified
setting, with structure similar to the KF and EnKF. Computational aspects
are studied to handle the ensemble-based fitting, and challenges related to
the skewness dimension over many filtering times are discussed for all the
KF variants.

In Section 2 we outline the modeling assumptions and present the CSN
distribution. In Section 3 we present the CSN filter under linear modeling
assumptions. In Section 4 we similarly present the CSN filter under non-
linear modeling assumptions. In Section 5 we illustrate the methodologies
using numeric examples.

2. Background

2.1. Notation

Throughout this paper, we use xt ∈ ℜn×1 as a nx dimensional distinction
of interest at time t = 1, . . . , T . We assume that the dynamics of these
state variables are represented by a set of difference equations with additive
noise xt = f (xt−1) + ηt, where f (·) : ℜnx×1 7−→ ℜnx×1 is a general linear
or nonlinear function and ηt ∈ ℜnx×1 is independent additive noise with
known distribution. If the system dynamics are linear, we use the notation
xt = Fxt−1 + ηt, where F ∈ ℜnx×nx .

The notation x ∼ π (·) is used to show that variable x is distributed
according to the probability density functions (pdf) π(x). The Markov as-
sumption about the state means that π (xt|xt−1,xt−2, · · ·x0) = π (xt|xt−1),
and we have joint pdf π (xT ,xT−1, · · ·x0) = π (xT |xT−1) · · ·π (x1|x0)π (x0),
where π (x0) is the initial pdf.

The observation equation is dt = h (xt) + ǫt, where dt ∈ ℜnd×1 and ǫt
is the independent additive noise with known distribution. Thus, we assume
that the data at different times are mutually independent given the state.
The likelihood for the data is π(dt|xt). The notation Dt = [d1,d2, · · ·dt] is
used for the collection of data from time 1 to t. Here, we assume a linear or
weakly nonlinear relationship between the observation and the state variable.
Thus, we linearize the measurement equation using a first order Taylor series
expansion to get h (xt) ≈ h0 +Hxt, where H ∈ ℜnd×nx .
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Figure 1: Graphical representation of state variables xt, at discrete time points t = 0, 1, . . .
and observations dt, t = 1, 2, . . .. The process model is assumed to follow a Markov
structure. The data are assumed to be conditionally independent, given the state variable
at the indicated time steps. The filtering problem characterizes the distribution of states
over time, given all currently available data.

Figure 1 illustrates the modeling assumptions graphically. In the follow-
ing we will specify the initial distribution of x0 in Figure 1 and the distri-
butions for the additive noise terms ηt and ǫt. In the examples we assign
specific relations f or F , andH . These operators could also depend on time,
but we ignore this to simplify the mathematical notation.

2.2. The filtering problem

Our goal is to assess the distribution of the state vector given all the
currently available observations, i.e. the pdf π (xt|Dt) at each time index t.
A recursive formulation gives the exact solution to this filtering problem by
the following two steps. First, derive the one-step predictive pdf:

π(xt|Dt−1) =

∫

π (xt|xt−1)π (xt−1|Dt−1) dxt−1, (1)

where we use the Markovian state model to propagate variables one time
index forward. Next, Bayes rule is used to assimilate the current data:

π (xt|Dt) =
π (dt|xt)π (xt|Dt−1)

π (dt|Dt−1)
. (2)
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Here, the one-step predictive pdf plays the role of a prior (like in prior to data
dt), and the conditionally independent likelihood of current data is π(dt|xt).
Expression (1) and (2) are evaluated from time t = 1 to T , with initial
distribution π(x0|D0) = π(x0).

Unfortunately, the solution provided by (1) and (2) is not applicable to
most practical systems because it contains complicated multi-dimensional
integrals. However, these integrals are possible by putting some limitations
on the model. Under linear and Gaussian assumptions, the KF is the exact
solution to the filtering problem. Another possibility is to approximate the
complicated integrals, via Monte Carlo sampling or by Gaussian approxi-
mations. The EnKF is based on fitting a Gaussian approximation to the
one-step predictive pdf. In the current paper we present methods that ex-
tend these popular algorithms. Our contribution allows skewed distributions
of the type we will discuss next.

2.3. Closed skew normal distribution

The CSN distribution is an extension of the Gaussian pdf, see Genton
(2004) and Flecher et al. (2009). It has many properties similar to the Gaus-
sian (Domı́nguez-Molina et al., 2003). In particular, the CSN distribution is
conjugate, i.e. when the prior pdf and likelihood are both CSN, and there
is a linear relation in the likelihood, the posterior pdf is also CSN (Karimi
et al., 2010).

Denote the n dimensional Gaussian pdf by π(x) = φn(x;µ,Σ) and the
associated cumulative distribution function (cdf) by Φn(x;µ,Σ). A random
vector x = (x1, . . . , xn)

t is CSN distributed if its pdf is as follows:

x ∼ CSNn,q (x;µ,Σ,Γ, v,∆)

=
[

Φq

(

0; v,∆+ ΓΣΓT
)]−1

Φq (Γ (x− µ) ; v,∆)φn (x;µ,Σ) (3)

where µ ∈ ℜn×1, Σ ∈ ℜn×n, Γ ∈ ℜq×n, v ∈ ℜq and ∆ ∈ ℜq×q. Here, Σ
and ∆ are positive definite matrices. The integer q defines the skewness
dimension of the CSN pdf. The µ can be interpreted as a centralization
parameter, and Σ is a scale matrix, but note that the mean is not µ and
the covariance matrix is not Σ. If we set Γ = 0, the CSN pdf reduces to
the Gaussian with mean µ and covariance Σ. Figure 2 illustrates a bivariate
CSN distribution.

A critical point in the evaluation of (3) is the two cdf terms. For large
skewness dimension q, the Gaussian cdf is very hard to compute. This makes
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Figure 2: Bivariate CSN and its marginal pdfs.

parameter estimation, prediction and sampling challenging for the CSN dis-
tribution, and the issue will also be discussed for the filtering computations
below.

We will use several important properties of the CSN distribution. The
conjugacy was mentioned earlier. More over, if x1 and x2 are independent
CSN random variables, then x = x1 + x2 is also CSN. If x is CSN, then a
linear transformation of x, Hx, is also CSN. Further, we will use a condi-
tional definition of the CSN distribution as follows: Assume that x and t are
joint Gaussian distributed, i.e.

(

x

t

)

∼ φn+q

([

µ

−v

]

,

[

Σ ΣΓT

ΓΣ ∆+ ΓΣΓT

])

. (4)

The block diagonals of the covariance matrix are the marginal covariances
of x and t, and the off-diagonals are their cross-covariance. The conditional
distribution x|t > 0 is the CSN pdf with parameterization defined above.
See Appendix for further description of the CSN properties.
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3. CSN filter for linear dynamical systems

We will here consider the linear process model from above; xt = Fxt−1+
ηt. We first present the main CSN filtering formulation, and then some
special cases.

3.1. Prediction and update formula

The recursive solution to the filtering problem described in (1) and (2) is
now possible to solve analytically under CSN assumptions. The prediction
and update steps are as follows:

1) Prediction step:
Assume that π (xt−1|Dt−1) ∼ CSNnx,qx (µ,Σ,Γ, v,∆) and the process

noise π (ηt) ∼ CSNnx,qη

(

µη,Ση,Γη, vη,∆η

)

are mutually independent.
The linear process model, in conjunction with the results in the Appendix,

means the one-step predictive pdf is π (xt|Dt−1) ∼ CSNnx,qx+qη (µx,Σx,Γx, vx,∆x),
where:

µx = Fµ+ µη,Σx = FΣF T +Ση

Γx =

(

ΓΣF TΣ−1
x

ΓηΣηΣ
−1
x

)

, vx =

(

v

vη

)

(5)

∆x =

(

∆+ ΓΣΓT − ΓΣF TΣ−1
x FΣΓT −ΓΣF TΣ−1

x ΣηΓ
T
η

−ΓηΣηΣ
−1
x FΣΓT ∆η + ΓηΣηΓ

T
η − ΓηΣηΣ

−1
x ΣηΓ

T
η

)

2) Update step:
Just like for the KF, the CSN pdf entails a conjugate update step of the

filter. For the updating we integrate the data via the likelihood π (dt|xt) ∼
CSNnd,qǫ(Hxt+µǫ,Σǫ,Γǫ, vǫ,∆ǫ). The updated pdf is π (xt|Dt) ∼ CSNnx,qx+qη+qǫ(µx|d,Σx|d,Γ
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Here, the parameters are as follows:

µx|d = µx +ΣxH
T
[

HΣxH
T +Σǫ

]−1
(dt −Hµx − µǫ)

Σx|d = Σx −ΣxH
T
[

HΣxH
T +Σǫ

]−1
HΣx

Γx|d =

[[

ΓxΣx

0

]

−

[

ΓxΣxH
T

ΓǫΣǫ

]

[

HΣxH
T +Σǫ

]−1
HΣx

]

Σ−1
x|d (6)

vx|d =

[

−vx

−vǫ

]

+

[

ΓxΣxH
T

ΓǫΣǫ

]

[

HΣxH
T +Σǫ

]−1
(dt −Hµx − µǫ)

∆x|d =

[

∆x + ΓxΣxΓ
T
x 0

0 ∆ǫ + ΓǫΣǫΓ
T
ǫ

]

−

[

ΓxΣxH
T

ΓǫΣǫ

]

[

HΣxH
T +Σǫ

]−1
[

ΓxΣxH
T

ΓǫΣǫ

]T

− Γx|dΣx|dΓ
T
x|d

For details, see the Appendix.
We can divide the relations in (6) in two parts: i) Gaussian parts which

consist of updating µ and Σ, and ii) skewed parts which consist of updating
Γ, v and∆. Similar to the KF, we have linear updates for both µ and v. The
other parameters do not depend on the data. By defining (dt −Hµx − µǫ)
as the innovation or measurement residual, we have two Kalman gains; one
for the Gaussian and one for the skewed part:

KGauss = ΣxH
T
[

HΣxH
T +Σǫ

]−1
,

KSkewed =

[

ΓxΣxH
T

ΓǫΣǫ

]

[

HΣxH
T +Σǫ

]−1
. (7)

The skewness dimension of the updated CSN is different from the pre-
dictive CSN. In the predictive pdf it is qx, while it is qx + qη + qǫ for the
updated pdf. This means that the skewness dimension explodes as the re-
cursion proceeds over many time steps. As a result the matrix dimensions
grow, parameter estimation gets more complicated, sampling is harder, and
so on. Thus, for practical purposes we need to assume simplified conditions.

3.2. Special cases

Note that it is hard to grasp the influence of skewness in the prediction
noise and the likelihood on the filtering solution. But some guidelines can be
drawn from the update formulas in (6). For instance, if the prior is Gaussian
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and the likelihood noise CSN, the posterior will be skewed, and the level of
skewness clearly depends on the noise scale (Σǫ) and the prior covariance
(Σx). Moreover, the anchor point of the skewness variable, vx|d, depends
on the skewness and scale of the likelihood and prior covariance. However,
in our experience it is hard to foresee effects of skewness over time without
actually implementing the algorithm and checking the results. Instead we
list some special cases of the filter below.
Kalman filter

If the initial pdf is Gaussian and all noise terms are Gaussian, the CSN
filter formulation is identical to that of the KF. This occurs when Γ = 0.
Consequently we just have µ and Σ in the prediction and update equations,
i.e. the Gaussian Kalman gain part.
Gaussian noise with skewed prior

The reason for the explosion in the skewness dimension is the process and
observation noise terms, i.e. qη and qǫ. If these dimensions are assumed to be
zero, the proposed filter avoids explosion in the skewness. Setting qη = 0 and
qǫ = 0 is equivalent to assuming that the additive process and observation
noise terms are Gaussian. Only the initial pdf π(x0) is CSN. Over many
time steps the initial distribution will lose influence, and the solution will go
towards the Gaussian one.
Re-fitting the updated distribution

One idea for avoiding skewness explosion is to reset the parameters at each
step in the recursion. This entails that we approximate the updated pdf with
a new CSN distribution with structure similar to that of the previous one.
This gives

CSNnx,qx+qη+qǫ(µx|d,Σx|d,Γx|d, vx|d,∆x|d) ≈ CSNnx,qx(µ
′

,Σ
′

,Γ
′

, v
′

,∆
′

). (8)

However, it is unclear how to fit the new CSN, and to understand its prop-
erties.

4. CSN filter for nonlinear dynamical systems

Nonlinearities in the propagation of state variables are always problematic
because of the chaotic effects that may be induced. It is very hard to find a
solution for all kinds of nonlinearity and it is common to find a solution for
a family of nonlinearities. In general, if x ∼ π (x) and y = f (x), it is very
hard to find the exact distribution of y ∼ π (y), for general function f (·).
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Fortunately, statisticians have a solution for handling nonlinear functions:
We can approximate the distribution of y via Monte Carlo sampling. I.e.
generate independent realizations from π (x) and propagate them through
the function y = f (x). The resulting samples represent the empirical distri-
bution of y. We may add noise to these samples to represent the predictive
distribution in (1). A good approximation requires many samples. Gener-
ating realizations from π(x) can usually be done efficiently, but evaluating
f (·) may be time-demanding for many practical applications. For filter-
ing purposes, predicted samples must be updated using (2) when new data
get available. For the PF algorithms, the number of samples must usually
be very large in this setting to avoid degeneration, see e.g. Doucet et al.
(2001). This means that the empirical approximation of π(xt|Dt), obtained
by many recursive steps with moderate Monte Carlo sample size, may not
be very reliable for practical applications.

Another approach is to consider an special parametric distribution for
the samples y. One would then attempt to fit the parameters in the selected
parametric family using the Monte Carlo samples from the predictive distri-
bution. This is done in the EnKF, which assumes a Gaussian distribution for
the predictive distribution. The EnKF in this way estimates the mean and
covariance of a Gaussian approximation to π(xt|Dt−1) by using the empirical
mean and covariance of the propagated samples.

We next study the nonlinear filtering problem in a CSN setting. This en-
tails using a CSN approximation for the predictive distribution of the filter.
The approximation will be an ensemble-based, in the spirit of the EnKF.
The parameter estimation is harder than for the EnKF, and we apply com-
putational ideas based on the conditional form of the CSN distribution.

4.1. Prediction and update formulas

Using Monte Carlo sampling and CSN approximations, the prediction
and update steps are as follows:

1) Prediction step:
We assume we have B samples from the updated distribution at time

t− 1. Denote these by xi
t−1, i = 1, 2, · · ·B. Let yi

t = f
(

xi
t−1

)

represent the
propagated state variables of each sample.

We next consider a CSN approximation for yi
t, i.e. we assume π(yt) ∼

CSNny,qx (µ,Σ,Γ, v,∆). The computational aspects related to this fitting
step are described in Section 4.2. Since we assume additive CSN process
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noise π (ηt) ∼ CSNnx,qη

(

µη,Ση,Γη, vη,∆η

)

, the predictive distribution will
be CSN as well, with skewness dimension qx+ qη. See (5) and the Appendix.

2) Update step:
By conjugacy, assuming a linear relation for the center parameter in the

CSN likelihood, the updated distribution is also CSN. We have π (xt|Dt) ∼
CSNn,qx+qη+qǫ(µx|d,Σx|d,Γx|d, vx|d,∆x|d), where the parameters are analyti-
cally available by (6).

4.2. Computational methods for fitting the CSN predictive distribution

In this part, we introduce a method for fitting the distribution of a func-
tion of CSN random variables. A good starting point for the exposition is
that of a linear function, i.e. y = Fx and x ∼ CSNnx,qx(µx,Σx,Γx, vx,∆x).
From the Appendix we know that y is also CSN. According to the conditional
formulation of the CSN distribution in Section 2.3 we have:

(

x

t1

)

∼ φnx+qx

([

µx

−vx

]

,

[

Σx ΣxΓ
T
x

ΓxΣx ∆x + ΓxΣxΓ
T
x

])

. (9)

For the variable y = Fx we similarly have

(

y

t2

)

∼ φp+q

([

Fµx

−vx

]

,

[

FΣxF
T FΣxΓ

T
x

ΓxΣxF ∆x + ΓxΣxΓ
T
x

])

. (10)

Considering the linear relationship between x and y in (9) and (10) we set

[

y

t2

]

=

[

F 0
0 I

] [

x

t1

]

. (11)

Now, for generating samples from π(y) we have two options. The first one
is deriving the distribution of y analytically, which is CSN, and then gener-
ating samples from it. The second method is to generate samples from π(x)
and then propagating them according to y = Fx. In this latter case we have
samples from π(y) without using the actual pdf of y. Generating variables
from a CSN distribution is usually done by rejection sampling. Indepen-
dent samples are drawn from the unconditional joint Gaussian distribution
of [xT , tT1 ]

T , and then we choose the samples which satisfy x|t1 > 0. In our
setting we generate [xT , tT1 ]

T , and then transform them by diag[F , I] in (11).
This gives samples of [yT , tT2 ]

T . This approach sets t1 = t2, and it does not
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matter if we condition on t1 or t2. We are postponing the conditioning on
this skewness variable being positive.

Returning to nonlinear transformations y = f (x). We generate [xT , tT1 ]
T

and then propagate them through [fT (x), tT1 ]
T . From these predictive sam-

ples we fit a joint Gaussian for (yT , tt2)
t, i.e. we estimate the mean (µT

1 ,µ
T
2 )

T

and covariance

[

Σ1 Σ12

Σ21 Σ2

]

. Once we condition on t2 > 0, we have the ap-

proximate CSN distribution.
The benefit of using this fitting approach is that we avoid complicated

maximization. For the joint Gaussian distribution it is easy to fit the mean
and the covariance, while the explicit CSN form is hard to fit. For instance,
using maximum likelihood to estimate the five parameters directly is not
very stable. Note, however, that we have limitations related to the skewness
dimension. It increases at each time step when we have additive CSN noise
terms. Moreover, if the forward model is extremely nonlinear, the skewness
variables may get quite extreme, and it is not easy to generate CSN samples
by rejection sampling (see Appendix). The approach based on postponing
the samples may then not be accurate enough.

Algorithm 1 and 2 provide summaries of the approach in the form of
pseudocode. The code in Algorithm 1 is written as a prediction and updating
step, inside the recursion over time. Note how the code relies on Monte Carlo
samples for capturing the predictive distribution. A CSN distribution is fitted
from the predicted ensembles. The steps required for this are written out in
Algorithm 2. The updating step relies on conjugate forms in the CSN family.

Algorithm 1 CSN Nonlinear
1: Draw B samples x1

0
,x2

0
, · · · ,xB

0
∼ CSNnx,qx (µ0,Σ0,Γ0, v0,∆0) from the initial distribution.

2: for t = 1 to T do
3: Prediction step:
4: Propagate to achieve predicted samples yi

t = f
(

xi
t−1

)

, i = 1, 2, · · ·B.

5: Fit a CSNnx,qx (µ,Σ,Γ,v,∆) distribution to the predicted samples (See Algorithm 2).
6: Find the predictive distribution analytically by (1): π (xt|Y t−1) ∼

CSNnx,qx+qη (µx,Σx,Γx, vx,∆x).
7: Update step: (when new observations dt arrive)
8: Find the posterior distribution π (xt|Dt) ∼ CSNn,qx+qη+qǫ (µx|d,Σx|d,Γx|d,vx|d,∆x|d) accord-

ing to (6).
9: Generate B samples from the posterior x1

t ,x
2
t , · · · ,x

B
t ∼ π (xt|Dt).

10: end for
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Algorithm 2 Predictive distribution estimation
1: Construct the prior Gaussian of the augmented state using (9).
2: Generate samples from this joint Gaussian distribution, [(xi

t−1
)T , (ti

1
)T ]T , i = 1, 2, · · ·B.

3: Propagate these samples through [fT (xi
t−1), (t

i
1)

T ]T , i = 1, 2, · · ·B.

4: Empirically estimate the mean and covariance of these propagated samples to construct the predictive
Gaussian distribution of the augmented state.

5: Use the conditional definition of the CSN distribution to get predictive CSN distribution,
CSNnx,qx (µ,Σ,Γ,v,∆).

4.3. Special cases

For the nonlinear case it is even harder than in the linear case to provide
guidelines for the filtering performance. But we have the similar special cases
as in the linear situation in 3.2.
Ensemble Kalman filter

When we assume no skewness in the predictive distributions, and Gaus-
sian noise terms, we get the EnKF. This special case occurs by enforcing
Γx = 0 in the CSN formulation.
Gaussian prediction and skewed noise

We may fit a Gaussian to the predictive samples, but allow skewness in
the noise terms. This means an extension over the EnKF to accomodate
more general kinds of additive noise, but not treating the dynamical system
differently.
Gaussian noise with skewed prior

Like we discussed above, qη > 0 and qǫ > 0 mean an explosion in the
skewness dimension. If we assume qη = 0 and qǫ = 0, the proposed filter
avoids explosion in the skewness. Then we always fit a CSN of skewness
dimension identical to that of the initial pdf π(x0).
Re-fitting the updated distribution

One may try to reset the parameters at each step in the recursion. By
enforcing q < qx + qη the CSN approximation avoids skewness dimension
explosion.

5. Numeric examples

This part consists of a couple of numeric examples in order to evaluate
the CSNKF. We compare the results of the KF and EnKF with the CSNKF.
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5.1. Synthetic linear model

Consider the following two dimensional linear system:

π (xt|xt−1) ∼ CSN2,1

(

[

0.7 −0.1
−0.1 0.5

]

xt−1, diag

[

0.005
0.02

]

,

[

0.05
−0.01

]T

, 0, 1

)

,

π (dt|xt) ∼ CSN2,1

(

xt, diag

[

0.05
0.2

]

,

[

0.05
−0.01

]T

, 0, 1

)

,

π(x0) ∼ CSN2,1

(

[

−5
5

]

, diag

[

0.05
0.2

]

,

[

0.05
−0.01

]T

, 0, 1

)

. (12)

The dynamic system is stable because its modes are inside the unit circle.
In addition, the system is observable because the state vector is measured
directly. We choose the mean and variance of the Gaussian prior, process
and observation distributions in the KF such that they match the related
first and second moment of the CSN pdfs.

We compare the filtering results of three filters: i) KF ii) CSNKF based on
analytical formulation for the predictive distribution and iii) The ensemble-
based CSNKF using B = 100. We run 1000 replicates in the comparison. We
compare results in absolute error and total mean square error (MSE). The
absolute error is the absolute value of the difference between the estimated
values and true value from the model at each time index. The total MSE
at each time is the mean of cumulative MSE of the estimated values from
beginning until current time index.

Figure 3 shows that the analytical CSN filter is very similar to the
ensemble-based CSNKF. The negligible difference is caused by Monte Carlo
error. The absolute error and total MSE for the CSNKF is lower than for
the KF. The errors decrease for the KF as well, but not so much. The KF
solution appears biased since the centered Gaussian pdfs cannot capture the
true skewness.

5.2. Re entering body to the atmosphere

This example is from Julier (1998). Assume a body re-enters the at-
mosphere at a very high altitude and high velocity (assume the gravity is
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Figure 3: Linear Case Simulation: the upper plots show the absolute errors and lower plot
shows the total MSE for the KF (dash line), the CSNKF based on analytically achieved
predictive distribution (dash-dot line) and the ensemble based CSNKF based on postpon-
ing the conditioning idea.

negligible). The time dynamics of this nonlinear system are:







dx1,t

dt
dx2,t

dt






=

[

−x2,t

−βx2
2,t exp (−γx1,t)

]

(13)

where β = 2 · 10−3 is the constant ballistic coefficient and γ = 5 · 10−5 is
a constant related to the air density with altitude. We are interested in
estimating the body altitude x1,t and velocity x2,t. A fourth order Runge-
Kutta method is used for the dynamics equation giving xt = f (xt−1) + ηt,
where ηt is additive process noise with known pdf. The position of the body
is measured by radar every second, with additive noise, i.e. dt = x1,t + ǫt.

We compare the EnKF and the proposed ensemble-based CSNKF for
this nonlinear system. We consider the following initial pdf, process and
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Figure 4: The re-enter body’s motion simulation for different λ1 and λ2: upper plots
show the estimated values from the EnKF (solid line), the CSNKF (dash line) and the
exact value (dash-dot line) for the position (left) and velocity (right) when λ1 = λ2 = 0;
the lower plots are the total MSE for the EnKF (solid line), the CSNKF (dash line) for
different values of λ1 and λ2.

observation distributions:

π(x0) ∼ CSN2,2

([

30
2

]

· 104,Σx, λ1Σ
− 1

2
x ,

[

0
0

]

, (1− λ2
1)I

)

π(xt|xt−1) ∼ CSN2,2

(

f(xt−1),Σx, λ2Σ
− 1

2
x ,

[

0
0

]

, (1− λ2
2)I

)

π(dt|xt) ∼ φ1

(

[1, 0]xt, 4 · 10
3
)

(14)

Where, Σx = diag[103, 4 · 102], and 0 ≤ λ1, λ2 < 1 controls the skewness of
the distributions (Flecher et al., 2009). For λ1 = 0 or λ2 = 0, there is no
skewness and the CSN distribution is exactly the Gaussian, but note that
q = 2 and the ensemble-based CSNKF still has the capability of adding
skewness in the nonlinear prediction. The observation noise is Gaussian.

Figure 4, shows the simulation results for this case with different prior and
process noise skewness’s with B = 100 ensemble members. The upper plots
present the estimated values and real value when λ1 = λ2 = 0, while the lower
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plots show the filter’s performance in the total MSE sense. For λ1 = λ2 = 0,
the performance of both filters are almost equal (the second plot from top),
as it should be. The CSNKF recognizes Gaussianity. The prior skewness
increased by putting λ1 = 0.4. The CSNKF is better than the EnKF in the
beginning, but after some steps the results are the same (the third plot from
top). This plot indicates that some skewness is imposed by the dynamics in
the initial phase when there is much uncertainty in the predicted distribution.
But since we measure the altitude directly with Gaussian symmetric noise,
the skewness seems to die out over time in the filter and the CSNKF converges
to EnKF as time goes.

Consider the case where λ1 = λ2 = 0.4. The lowest plot in Figure 4 shows
the simulation results for this case with more skewness. This plot shows that
the differences between two filters can be quite significant. When we have
additive CSN noise terms in the process model, the observations induce less
symmetry than they did before. Note that, in order to reduce the random
effects all simulations are done for 500 replicates (Monte Carlo runs).

5.3. Saturation estimation in petroleum reservoir

We consider a petroleum reservoir model with nonlinear dynamics f(xt)
consisting of the partial differential equations governing fluid flow in porous
media. In our setting the dynamic model takes the form of a black-box rou-
tine. There are several commercial and non-commercial reservoir simulators
(i.e. ECLIPSE by GeoQuest). We use the MATLAB Reservoir Simulation
Toolbox (MRST). For more details see www.sintef.no/Projectweb/MRST/.
The EnKF is a typical tool for the state estimation in very high dimensional
systems (Sætrom and Omre, 2011; Rezaie and Eidsvik, 2012). The state es-
timation in petroleum reservoirs is also known as history matching. We are
going to compare the results of the EnKF and the proposed ensemble based
CSNKF.

We study a reservoir with 15× 15× 4 grid cells. For each grid cell we set
the porosity and permeability values from the SPE10 data set, see Christie
and Blunt (2001). The porosity and permeability are static variables, and
do not change during production. Upper plots in Figure 5 show the fixed
porosity and permeability values on the grid. Petroleum production is done
by one injection well and one production well (see lower left plot of Figure 5).
At time t = 0 water is pumped at the injection well for replacing and moving
oil to the production well. Based on fluid dynamics, the flow is faster where
the permeability and porosity is high. The lower plots of Figure 5 show the
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(dash line) and the skew normal fitting results (dash-dot line), the skew normal distribution
has closer distribution to the empirical distribution than the Gaussian.

saturations of all grid cells after 100 days and 400 days of production. The
oil in grid cells near the injection well have been replaced by the injected
water, pushing oil towards the production well.

In petroleum exploration one goal is to predict the oil production, another
goal is to locate the remaining oil in the reservoir, over time. Thus, the satu-
ration at all grid cells is considered as the state vector xt. For achieving these
filtering and prediction purposes it is useful to acquire seismic data (dt) over
time. The data we consider here consists of seismic amplitude versus offset
(AVO) observations: zero-offset reflectivity (R0) and AVO gradient (G) at
the top reservoir. These data are informative of the elastic properties of the
reservoir, and this again depends on the saturation, as well as other reservoir
variables. Figure 6 presents the expected AVO response, i.e. E(dt,i|xt,i) for
any grid cell i, for a range of saturation and porosity levels. These seismic re-
sponse levels are obtained using a Reuss fluid mixing model and Gassmann’s
formula for fluid substitution, see e.g. Mavko et al. (2003) and Eidsvik et al.
(2008). We assume the elastic properties of the cap rock above the reservoir
unit are fixed. We assume that a baseline seismic survey is performed at the
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Figure 8: Reservoir parameter estimation for λ = 0 case: the performance of the CSNKF
(dash line) is similar to the EnKF (dash-dot line).

initial time t = 0. Subsequently, monitoring surveys are performed every 100
days for T = 20 time steps, i.e. day 100, 200 · · ·2000 of production.

We consider two cases: i) additive Gaussian process and observation
noises ii) additive Gaussian process noise and additive CSN observation
noises. Figure 7 indicates that a skewed model is a more realistic fit to
the seismic AVO data R0 (left) and G (right). The EnKF and the CSNKF
algorithms are compared, using B = 100 samples. We study the filtering and
one-step predictive distribution of the saturation. We also look at the pro-
duction in the reservoir, and compare the results with the true realizations.
For all output variables of interest we compare the total MSE of estimated
values and the 95 % distribution coverage.

Consider Gaussian observation noise terms. Figure 8 shows the results for
EnKF and CSNKF. We note only negligible differences due to Monte Carlo
error. We next include skewness in the seismic AVO measurement noise
terms, setting λ = 0.4 which is a value inspired from the SPE10 data, see
Figure 7. In Figure 9 the EnKF performance is worse than the CSNKF. We
see that CSNKF has smaller filtering total MSE and one-step prediction MSE
(left) for the saturation variables. In terms of predicting the production, the
CSNKF also has smaller MSE. However, for all these attributes, the CSNKF
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Figure 9: Reservoir parameter estimation for λ = 0.4 case: the performance of the CSNKF
(dash line) is superior to the EnKF (dash-dot line).

again appears to get closer to the EnKF over time. The 95 % distribution
coverage (lower right plot of Figure 9) of both filters are high at the beginning
steps but it goes down fast for the EnKF, which undercovers a lot here.

6. Closing remarks

The closed skew normal distribution was introduced as an extension of
the Gaussian distributions for linear and nonlinear filtering. The suggested
approach includes skewed versions of the Kalman filter and the ensemble
Kalman filter. The common Gaussian Kalman filter variants are special cases
of the proposed filters. We implemented the proposed methods on a linear
model, a bivariate nonlinear falling body example and a high dimensional
nonlinear petroleum reservoir model. In these examples we tried to study
the various effects of using a closed skew normal distribution in the filtering
problem.

Our presentation relies on additive noise terms, and that these are Gaus-
sian or closed skew normal distributed. We believe this could be extended,
but in general it is not straightforward to assign the skewness dimensions
of the predictive distribution. In the current formulation we aimed to tune
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the skewness with a flexible formulation used before, which ties the skew-
ness dimension to the square root of the covariance matrix. The augmented
Gaussian formulation of state and skewness variable then allows fast fitting
of the predictive closed skew normal distribution at each step.

Recall that the computational methods for fitting the ensemble-based
version of the filter are based on rejection sampling. In high dimensional
situations, with much nonlinearity, we experienced some challenges in the
acceptance rate here. Other sampling methods may be more useful.
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Appendix A. CSN definition and properties

Assume x ∈ ℜnx×1 and y ∈ ℜny×1 are joint Gaussian random vectors:

[

x

y

]

∼ φnx+ny

([

µx

µy

]

,

[

Σx Σx,y

Σy,x Σy

])

. (A.1)

We then have:

π (z) = π (x|y > 0) =
π (y > 0|x)π (x)

π (y > 0)
(A.2)

=
[

1− Φny

(

0;µy,Σy

)]−1 [
1− Φny

(

0;µy|x,Σy|x

)]

φnx
(x;µx,Σx) ,

where µy|x = µy+Σy,xΣ
−1
x (x− µx) , and Σy|x = Σy−Σy,xΣ

−1
x Σx,y. Simple

re-writing now gives the standard CSN parameterization z ∼ CSNnz,qz (µ,Σ,Γ, v,∆).
We have nz = nx, qz = ny, µ = µx, Σ = Σx, Γ = Σy,xΣ

−1
x , v = −µy and

∆ = Σy −Σy,xΣ
−1
x Σx,y.

The following properties of CSN random variables are derived in González-
Faŕıas et al. (2004).
Property 1: If x1 ∼ CSNbx,qx1

(µ1,Σ1,Γ1, v1,∆1) and x2 ∼ CSNnx,qx2
(µ2,Σ2,Γ2, v2,∆2)
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are independent, then x = x1 + x2 ∼ CSNnx,qx1+qx2
(µ,Σ,Γ, v,∆), where:

µ = µ1 + µ2, Σ = Σ1 +Σ2, Γ =

(

Γ1Σ1Σ
−1

Γ2Σ2Σ
−1

)

, v =

(

v1

v2

)

(A.3)

∆ =

(

∆1 + Γ1Σ1Γ
T
1 − Γ1Σ1Σ

−1Σ1Γ
T
1 −Γ1Σ1Σ

−1Σ2Γ
T
2

−Γ2Σ2Σ
−1Σ1Γ

T
1 ∆2 + Γ2Σ2Γ

T
2 − Γ2Σ2Σ

−1Σ2Γ
T
2

)

.

Property 2: If x ∼ CSNnx,qx(µx,Σx,Γx, vx,∆x) and F is ny × nx matrix
(ny ≤ nx) then y = Fx ∼ CSNny,qx(µy,Σy,Γy, vy,∆y), where:

µy = Fµx, Σy = FΣxF
T , Γy = ΓxΣxF

TΣ−1
y , vy = vx

∆y = ∆x + ΓxΣxΓ
T
x − ΓxΣxF

TΣ−1
y FΣxΓ

T
x . (A.4)

Property 3: Sampling from a CSN distribution: Let E1 ∼ φp (E1; 0,Σx)
andE2 ∼ φq (E2; 0,∆x) be independent random vectors, then x = µx+E1 ∼
CSNp,q(µx,Σx,Γx, vx,∆x) provided that y = −vx + ΓxE1 +E2 > 0.
Property 4: If x ∼ CSNn,qx(µx,Σx,Γx, vx,∆x) and π(d|x) ∼ CSNm,qe (Hx,Σe,Γe, ve,∆e),
then π(x|d) ∼ CSNn,qx+qe(µx|d,Σx|d,Γx|d, vx|d,∆x|d), where the parameters
are defined in (6)

For completeness we sketch a proof of this last property. Define x =
[t|u > 0] and e = [s|v > 0]. Let t, s and v be mutually independent and u

and v mutually independent. Then we have









t

r = Ht+ s

u

v









∼

φn+m+qx+qe

















µx

Hµx

−vx

−ve









,









Σx ΣxH
T ΣxΓ

T
x 0

HΣx HΣxH
T +Σe HΣxΓ

T
x ΣeΓ

T
e

ΓxΣx ΓxΣxH
T ∆x + ΓxΣxΓ

T
x 0

0 ΓeΣe 0 ∆e + ΓeΣeΓ
T
e

















.

(A.5)

Besides, from the multivariate normal distribution;

[

x1

x2

]

∼ φn1+n2

([

µ1

µ2

]

,

[

Σ1 Σ12

Σ21 Σ2

])

, (A.6)
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then [x1|x2] ∼ φn1

(

x1;µ1 +Σ12Σ
−1
2 (x2 − µ2) ,Σ1 −Σ12Σ

−1
2 Σ21

)

.
Thus, we have





t|r
u|r
v|r



 ∼ φn+qx+qe









µt|r

µu|r

µv|r



 ,





Σt|r Σtu|r Σtv|r

Σut|r Σu|r Σuv|r

Σvt|r Σvu|r Σv|r







 , (A.7)

µt|r = µx +ΣxH
T
[

HΣxH
T +Σe

]−1
(r −Hµx)

µu|r = −vx + ΓxΣxH
T
[

HΣxH
T +Σe

]−1
(r −Hµx)

µv|r = −ve + ΓeΣe

[

HΣxH
T +Σe

]−1
(r −Hµx)

Σt|r = Σx −ΣxH
T
[

HΣxH
T +Σe

]−1
HΣx

Σu|r =
[

∆x + ΓxΣxΓ
T
x

]

− ΓxΣxH
T
[

HΣxH
T +Σe

]−1
HΣxΓ

T
x

Σv|r =
[

∆e + ΓeΣeΓ
T
e

]

− ΓeΣe

[

HΣxH
T +Σe

]−1
ΣeΓ

T
e

Σut|r = ΓxΣx − ΓxΣx

[

HΣxH
T +Σe

]−1
HΣx

Σvt|r = 0− ΓeΣe

[

HΣxH
T +Σe

]−1
HΣx

Σvt|r = 0− ΓxΣxH
T
[

HΣxH
T +Σe

]−1
ΣeΓ

T
e (A.8)

Let w =

[

u

v

]

, then

[

t|r
w|r

]

∼ φn+qx+qe

([

µt|r

µw|r

]

,

[

Σt|r Σtw|r

Σwt|r Σw|r

])

.

From the conditional definition of the CSN model, the posterior distribu-
tion is π(x|d) = π(t|r,w > 0) = CSNn,qx+qe(µx|d,Σx|d,Γx|d, vx|d,∆x|d).

24



References

Azzalini, A., Dalla-Valle, A., 1996. The multivariate skew-normal distribu-
tion. Biometrika 83, 715–726.

Christie, M.A., Blunt, M.J., 2001. Tenth spe comparative solution project:
A comparison of upscaling techniques. SPE Reservoir Engineering and
Evaluation 4, 308–317.
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