Convex Analysis, Sect. 2.1

Exercise 1

Show that NeZ ={d € E | (d,z — ) < 0,Vz € C'} is a closed set.

Proof: Define f, : E — R by f.(d) = (d,z — z). Then f, is continuous
(recall, the norm in F is defined by the inner product (-,-)) and therefore
the preimage f, ([0, +00)) of the closed set [0, +00) C R is closed in E. As
a result, the intersection of these sets is also closed:

NC(j) = mmGnyzl([Oa +OO)>

]
Exercise 2
Check that C' is convex and compute the normal cone No(z), = € C.
(a) C' = [a,b] CR.
Solution: Direct computation shows:
{0}, if z € (a,b),
Ne(z) =< [0, +00), if =0,
(—00,0], ifz=a
]

(b) C' - unit ball in E.

Solution: If z € intC' then for some small € > 0 we have T + ¢C C C.
Therefore, the inequality (d,z —z) < 0 for all x € C implies that (d, +-ee;) <
0, where e; are basis vectors in F, and consequently d = 0. Therefore,
Ne(z) = {0} in this case.

If, on the other hand, z = 1, then N¢(Z) = ZR,..

Indeed, for every a > 0 and x € C we have the inequalities

(az,x —z) =af (z,x) —(Z,7)] <a[l —1] <0,
——
<lzlll=zll<1 =1
which implies that N¢(z) O ZR,.

To obtain the opposite inclusion, let us consider an arbitrary d € F =
span(Z) @ [span(Z)]*, that is, d = aZ + 2, a € R, (z, z) = 0. Similarly, let us
take r = BT +~z, where 3,7 € R are selected so that 1 > ||z||* = 82+~2||z|*.
Then we want the inequality:

(d,x—2) =a(f 1) +|* <0.
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If v = 0 then we are free to select any 8 € [—1,1], from which it follows
that & > 0 is a must. If z # 0, then we can for example take § = cos(e),
v = sin(e) /|| z||, this way ||z| = 1 and

(d,x — @) = afcos(e) — 1) +sin(e)[|z] = —ae®/2 + €[] + o(e?),

which will be positive for small € > 0. Therefore, No(Z) C ZR;. O

(c) C-subspace of E.

Solution: Clearly N¢(z) 2 C*+:

Vo,z € C,de CF: (d,x — ) = 0.
——
ec

Consider now an arbitrary d € E=C @ C+, d =d, +dy, d; € C, dy € C+.
Take x =% +d; € C. Then

<d,l' — j’> = <d1, d1> + <d2, d1> .
>0 =0

Therefore, in order for d € N¢(Z)it is necessary that d; = 0, that is, d € C+,
implying that No(z) C CL. O
(d) Closed half-space: C ={z € E | {(a,z) <b},ac E\{0},beR.

Solution: As in (b), if € intC' then N¢(z) = {0}. Let us now consider
the case (a, ) = b.

Indeed, let us take any d € E = span(a) @ [span(a)]*, that is, d = aa+ z,
a € R, {(a,z) = 0. Similarly, let v = — fa + vz, f,7 € Ry. Clearly z € C
as (a,z) = b— f]|al]|* < b. Then:

(d,x — ) = —aBal® + 7|z

Clearly the necessary condition for d € N¢(Z) is that @ > 0 and ||z|| = 0,
that is, No(z) C aR,.

A direct computation shows that these two conditions are also sufficient
for d € N¢(Z), and therefore we conclude that No(z) = aR.. O

() C={zeR"|z; >20,VjeJ}, JC{L,...,N}.

Solution: N¢(z) = S(X), where

S(z)={deR"|d; <0,if j € J and 7; = 0,d; = 0, otherwise }.
Let us take any z € C' and d € S(x). Then
<d,(L‘ — f) = Z dj Z; + Z dj (IL‘j - Zi‘j) < 0,
jeJAZ;=0 <0 \2/0/ jQJ\/f]'#O\:’O-/

implying S(z) C N¢ ().

By taking # € R” such that z; = max{d;,0} if j € JAZ; =0, z; =
zj+ed;, for j € JV x; # 0, where € > 0 is selected so small that z € C, the
same inequality shows that S(Z) O N¢ (7). O
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Exercise 3

For each of the following cones show that Ng(0) = —K.

(a) Non-negative cone: K = R7.

Solution: R} is the cone from Exercise 2(e) with J = {1,...,n}. With
this identification we simply re-use the result: Ngn(0) = {d € R" | d; <
0,i=1,...,n}=—R". [

(b) Semi-definite cone: K = S¥.

Solution: On the one hand, for every X € §! and every ¥ € —S% we
have the inequality

(Y, X —0) < AY)" MX) <0,

—— =
<0 >0
where we used Fan’s theorem. As a result, —S} C Ng»(0).

On the other hand, we can take an arbitrary ¥ € S™ and consider its
spectral decomposition, Y = UDiagyU?, U € O™. We then construct Y+ =
UDiagy™U”, where y;" = max{y;,0} and y; = min{y;,0}. In particular,
y=y"+y, Yy )rn =0, and YT € S?. Additionally, YY" have a
simultaneous ordered spectral decomposition (by construction). Therefore,
Fan’s theorem (with equality) is applicable, and

Y, Y1) = Y)"'AYT) = (g, y" e = Wy e + (7 y e = [lyT |20

Therefore, for Y to be in Ngr(0) it is necessary that yT = 0 - that is, that
all eigenvalues of Y are non-positive. Therefore, —S% 2 NSQ(O).
O
(c) Ice-cream cone: K = {z € R" | 2y > 0,22 > a5+ -+ + 22 }.
Solution: We take x € K, —y € —K and compute

n n 1/2 n 1/2
(—y,x—O):—xlyl—inyig—x1y1+(Zx?) (ny)
=2 =2

=2
< -z + 1y <0,

where we have used Cauchy—Bunyakovsky—Schwarz inequality and the defi-
nition of the ice-cream cone. Thus —K C Ng(0).

To show the opposite inclusion we consider an arbitrary y € R™. If y; > 0
we can define x; =y, 19 = --- =z, = 0 so that z € K but

(y,z) = y; > 0.

Therefore for y € Ng(0) it is necessary that y; < 0.



Further, if y; < 0 we define z; = y;, i = 2,...,n, and ¥y = (23 + -+ +
22)Y/2. Then x € K and

(y, ) = 21(y1 + 21).

Thus for y € Nk(0) it is necessary that y; < —a; = —(y2 +--- + y2)'/2
In other words, y € Nk (0) implies that —y € K, or —K 2 Ng(0). O

Exercise 4

Given: Ae L(E\)Y),beY,C ={xe€ E| Az =b}. Find No(z), where
zed.

Solution: Clearly x € C' <= x — 7 € ker A. In addition, for every
x € C' we have that £ = 2x — x € (', and consequently

(dyx—72)<0,Vre(C <= dLkerA <= de€imA* = A",

where the last equivalence is Fredholm alternative.
Fredholm alternative can be shown as follows. Vd € A*Y, dy € Y : d =
A*y. Vz € ker A we have the equality

(d,z) = (A%, 2) = (y, Az) = (y,0) =0,

which implies that A*Y C (ker A)L. To show the opposite inclusion we use
separation (Theorem 1.1.1). Since we are considering a finite-dimensional
situation, the linear subspace A*Y C F is closed. It is also a convex set, and
therefore Vd ¢ A*Y there is a € E'\ {0} and b € R, such that (a, A*y) =
(Aa,y) < b < {(a,d), Vy € Y. By selecting y = 0 € Y we conclude that
b € Ry, and by chosing y = ada € Y, a € R we see that a € ker A.
Consequently d & (ker A)t, and A*Y D (ker A)*. O

Exercise 7

1. Given: g : [0,1] — R - convex function with g(0) = 0. Show: g(t)/t :
(0,1] — R - nondecreasing.

Proof: Take 0 < t; < t3. Then t; = (t1/t2)t2 + (1 — t1/t2)0, and
by convexity of g we get g(t1) < t1/tag(tz) + (1 — t1/12)g(0) = t1/t2g(12).
Therefore, g(t1)/t1 < g(ta)/t. O

2. Show that for any convex function f : C' — R the quotient ¢
[f(z +t(x — ) — f(x)]/t is a non-decreasing function on (0, 1].

Proof: We define ¢(t) = f(z + t(x — z)) — f(x) and use the previous
result. 0J



3. Complete the proof of Proposition 2.1.2 (first order sufficient condi-
tions).
Proof: For all x € C' we have the following string of inequalities:

Ve oy i J@ = T)) — f(2)
ng(x,x—x)—lt%l ;

< f(‘f+t<x_‘f))_f($) :f(a:)—f(i"),

B t t=1

where the inequality on the second line is owing to the monotonicity of the
quotient. Thus z € C'if the global minimum of f over C. OJ

Exercise 8

(a) Given: f : C — R - strictly convex function; C-convex set. Show: at
most one global minimum.

Proof: Assume that f(z1) = f(x2) = mingec f(x). Then, utilizing strict
convexity,

Flwy+a2)/2) < [f(21) + f(22)]/2 = min f(z),

which is a contradiction since (1 + 22)/2 € C owing to the convexity of C.
OJ

(b) Show that the function f,(z) = ||z — y||?/2 is strictly convex.

Solution: Let 21 # 25 € E, A € (0,1) be arbitrary, and let z = \x; +
(1 — A)za. We need to show that f,(z) < Afy(z1) + (1 — X) fy(x2).

We can expand our function into a Taylor series around z, and we only
need to do that up to quadratic terms, since the original function is a
quadratic form:

fle=2) = fyl2) + (2 —p.x = ) 4ol — 2l

-~

=:g(x—z),affine part

The affine part g,(x) satisfies the “convexity condition” with exact equality:

gy(Az1 + (1 — N)x2) = Agy(z1) + (1 — N)gy(22), V1,22 € E, X € [0,1]. Thus

we can concentrate on the quadratic part hy,(z — z) 1= f,(z — 2) — g,(z — 2).

But now the inequality is trivial: hy(z —2) = ||z — 2[]*/2 = 0 < A||z1 — 2|]* +

(1= N|lz2 — 2||* = My(z1 — 2) + (1 = Nhy(xa — 2), since z # x1, 2 # T,

0<A< O
(c) Given: C' C E - non-empty, closed, convex.



(i) Show that there is a unique closed point Po(y) € C to any y € E,
which satisfies the conditions

(y— Poly),r— Po(y)) <0, Vxel.

Proof: Let f,(x) = |z — y||*/2, which is a strictly convex function
(cf. (b)). Consider the problem min,cc fy(x). Since C' is non-empty and
closed, and f, clearly satisfies the growth condition (1.1.4) and is convex
(cf. (b)), Propositions 1.1.5 and 1.1.3 imply that the global minimum is at-
tained. Owing to (a) and (b), this global minimum is unique; we will call it
Pe(y).

The first order necessary (Proposition 2.1.1) and sufficient (Proposition 2.1.2)
optimality conditions characterize Po(y) as

fy(Pe(y),r — Po(y) >0,  Vzel

=

(Pe(y) —y,z — Po(y)) >0, vz e C. O

(ii) Show that d € N¢(z), z € C if and only if z = Po(Z + d).
Proof:
de Nc(J_Z)
T
(d,z — 1) <0, Ve e C

)
(T+d—z,2—7) <0, Ve C
r
T = Fo(z +d),
where the last equivalence is owing to the characterization of Po(y) shown
in (i). O

(iii) Show the Lipschitz continuity of the projection: Vy,z € C': ||Po(y) —
Fo(2)| < ly = =]|
Proof: Owing to (ii), we have the inequality

(y— Po(y),z — Pe(y)) <0, VzeC = (y— Po(y),Po(z) — Pe(y)) <0.

Similarly
(= = Po(2), Pely) — Po(2)) <0.



Therefore we can write
|Pe(y) — Pe(2)II” = (Pely) — Pe(2), Po(y) — Po(2))
= (z — Pc(z), Ii(,;(y) — Po(2)) = (2, Pe(y) — Po(?))

N

<0

+ (Pe(y) —y. Po(y) — Po(2)) Hy, Pe(y) — Po(2))

(.

< (y— 2. Pe(y) — Pe(2)) <y — 2l Pe(y) — Be(2)],

where the last inequality is owing to Cauchy, Bunyakovsky, and Schwarz. [J
(d) Given a € E \ {0}, compute the nearest element Po(y) in C' = {xz €
E|{a,z) =0} toy € E.
Proof: Owing to (ii), we need to find x € C such that d = y—x € N¢(x),
where the latter cone equals to aR as computed in Exercise 4. Thus we need
to find a scalar a € R such that x =y — aa € C.

(y,a)

0= {(a,z) = (y,a) — ala,a) —= a=-"— —Wa.

(e) Projection on R” and S7}.
1. Prove that y* = Pgn (y), where y = max{y;,0}, y € R".
Proof: Let us define y~ = y—y*. Note that —y~ € R} and (y—,y™) = 0.

To prove the claim in view of (i), it is sufficient to notice that Vo € R’} we
have the inequality

-y e—y) = 2)-y y) <0
—_—— N —
<0 =0
O
2. Prove that V" = Psn (Y), where Y = UTDiagyU, and Y+ = UTDiagy* U,
yeR" UeQO™
Proof: We utilize Fan’s theorem (Theorem 1.2.1) twice:
Y -YT X)<AY = YHIANX) = AMU'Diagy U)" \(X) <0,
~ N~

<0 >0

and (since Y — Y™ and Y admit a simultaneous ordered spectral decompo-
sition)
Y -YT YD) =AY -YHIANYT) =y ,y g = 0.
As a consequence, VX € 87
Y -YT, X-Y*t) <o,

and therefore Y = Psn (Y) owing to (i). O



