Convex Analysis, Sect. 3.1

Exercise 1

To prove positive homogeneity, show that $f(0)=0$. Further, for all $\lambda \in \mathbb{R}_{++}$, $x \in E: f(x)=f\left(\lambda^{-1} \lambda x+0\right)$.

Exercise 3

Represent the subdifferential as an intersection of closed and convex sets.

Exercise 6

Revisit Exercise 7 in Section 2.1. Note that the function may assume infinite values now (though we select $\bar{x} \in \operatorname{dom} f$).

Exercise 9

Fan's inequality is the central tool. Showing the inclusion $\partial \lambda_{1}(0) \subset\{Y \in$ $\left.\mathcal{S}_{+}^{n} \mid \operatorname{tr} Y=1\right\}$ requires selecting "creative" directions $X \in \mathcal{S}^{n}$. Experiment with matrices, which admit simultaneous ordered spectral decomposition with the subgradient.

