Solutions_3

January 27, 2016

1 Exercise 5.2.3

Apply composite Simpson's rule with $m=1,2,4$ panels to approximate the integrals:
(a) $\int_{0}^{1} x^{2} \mathrm{~d} x=\frac{1}{3}$,
(b) $\int_{0}^{\pi / 2} \cos (x) \mathrm{d} x=1$,
(c) $\int_{0}^{1} e^{x} \mathrm{~d} x=e-1$,
and report the errors.

Solution

(a) $f(x)=x^{2}$.

For $m=1$ we put $h=(1-0) / 2=1 / 2, x_{0}=0, x_{1}=1 / 2, x_{2}=1 ; y_{0}=f\left(x_{0}\right)=0, y_{1}=f\left(x_{1}\right)=1 / 4$, $y_{2}=f\left(x_{2}\right)=1$. The approximation is then $I \approx h / 3\left(y_{0}+4 y_{1}+y_{2}\right)=(0+4 * 1 / 4+1) / 6=1 / 3$. The error is thus 0 .

For $m=2$ we have $h=(1-0) / 4=1 / 4,\left(x_{0}, x_{1}, \ldots, x_{4}\right)=(0,1 / 4,1 / 2,3 / 4,1),\left(y_{0}, y_{1}, \ldots, y_{4}\right)=$ $(0,1 / 16,1 / 4,9 / 16,1)$. The approximation is then $I \approx h / 3\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)=(0+4 \cdot 1 / 16+2$. $1 / 4+4 \cdot 9 / 16+1) / 12=(1 / 4+2 / 4+9 / 4+4 / 4) / 12=16 /(3 \cdot 4 \cdot 4)=1 / 3$. The error is thus 0 .

One could continue with $m=3$, but the error has to be zero. Indeed, Simpson's rule is based on quadratic interpolation polynomials, which means that x^{2} will be represented exactly by the interpolating polynomial and the quadrature will be exact.
(b) $f(x)=\cos (x)$

For $m=1$ we put $h=(\pi / 2-0) / 2=\pi / 4, x_{0}=0, x_{1}=\pi / 4, x_{2}=\pi / 2$; $y_{0}=f\left(x_{0}\right)=1, y_{1}=f\left(x_{1}\right)=$ $1 / \sqrt{2}, y_{2}=f\left(x_{2}\right)=0$. The approximation is then $I \approx h / 3\left(y_{0}+4 y_{1}+y_{2}\right)=(1+4 / \sqrt{2}+0) \cdot \pi / 12 \approx 1.00227$. The error is thus ≈ 0.00227.

For $m=2, \quad h=\pi / 8, \quad\left(x_{0}, \ldots, x_{4}\right)=(0, \pi / 8, \pi / 4,3 \pi / 8, \pi / 2), \quad\left(y_{0}, \ldots, y_{4}\right) \quad \approx$ $(1,0.9238795,1 / \sqrt{2}, 0.38268343,0) . \quad I \approx h / 3\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right) \approx 1.000135$, giving the error ≈ 0.000135.

For $m=3, h=\pi / 6, I \approx 1.00002631$, errror ≈ 0.00002631.
(c) $f(x)=\exp (x)$

For $m=1$ we put $h=(1-0) / 2=1 / 2, x_{0}=0, x_{1}=1 / 2, x_{2}=1 ; y_{0}=f\left(x_{0}\right)=1, y_{1}=f\left(x_{1}\right)=e^{1 / 2}$, $y_{2}=f\left(x_{2}\right)=e$. The approximation is then $I \approx h / 3\left(y_{0}+4 y_{1}+y_{2}\right)=(1+4 \sqrt{e}+e) / 6 \approx 1.71886115$. The error is thus $\approx 1.71886115-e+1 \approx 5.79 \cdot 10^{-4}$.

For $m=2, h=1 / 4,\left(x_{0}, \ldots, x_{4}\right)=(0,1 / 4,1 / 2,3 / 4,1), \ldots I \approx h / 3\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right) \approx$ 1.71831884192175 , giving the error $\approx 3.70 \cdot 10^{-5}$.

For $m=3, h=1 / 6, I \approx 1.71828916992083$, errror $\approx 7.34 \cdot 10^{-6}$.

2 Exercise 5.2.11

Find the degree of precision of the following approximation for $\int_{-1}^{1} f(x) \mathrm{d} x$:
First of all, let us evaluate the integral of a monomial $x^{n}, n \geq 0$:

$$
\int_{-1}^{1} x^{n} \mathrm{~d} x=\left[\frac{x^{n+1}}{n+1}\right]_{x=-1}^{x=1}= \begin{cases}0, & \text { for odd } n \\ 2 /(n+1), & \text { for even } n\end{cases}
$$

(a) $f(1)+f(-1)$:

Let us apply the quadrature to the monomial $x^{n}, n \geq 0$:

$$
1^{n}+(-1)^{n}= \begin{cases}0, & \text { for odd } n \\ 2, & \text { for even } n,\end{cases}
$$

Therefore the quadrature agrees with the integral for $n=0,1$ (and all odd n), and its degree of precision is 1 . (One could also observe that this is trapezoid quadrature on $[-1,1]$, which is known to be exact for polynomials up to degree 1.)
(b) $2 / 3[\mathrm{f}(-1)+\mathrm{f}(0)+\mathrm{f}(1)]$. We check the quadrature on monomials of increasing degree:

$$
2 / 3\left[(-1)^{n}+0^{n}+(-1)^{n}\right]= \begin{cases}2, & \text { for } n=0 \\ 0, & \text { for odd } n, \\ 4 / 3, & \text { for even } n>0\end{cases}
$$

which agrees with the integral for $n=0,1$ (and odd n). Thus degree of precision is 1 .
(c) We check the quadrature on monomials of increasing degree:

$$
\left[(-1 / \sqrt{3})^{n}+(1 / \sqrt{3})^{n}\right]= \begin{cases}0, & \text { for odd } n, \\ 2 / 3^{n / 2}, & \text { for even } n\end{cases}
$$

which agrees with the integral for $n=0,1,2,3$ (and odd n). Thus degree of precision is 3 . (This is an example of Gaussian quadrature, which are exact for polynomials of degree up to $2 n-1$ when n points are used.)

3 Exercise 5.2.16

Use the fact that the error term of Boole's Rule (see Exercise 5.2.15) is proportional to $f^{(6)}(c)$ to find the exact error term.

Solution

We apply the quadrature to the monomial x^{6}, for which $f^{(6)}(c) \equiv 6!$, for all c. Thus

$$
\int_{0}^{4 h} x^{6} \mathrm{~d} x=\left[\frac{x^{7}}{7}\right]_{x=0}^{x=4 h}=\frac{4^{7} h^{7}}{7}=\frac{2 h}{45}\left(7 \cdot 0^{6}+32 \cdot h^{6}+12 \cdot(2 h)^{6}+32 \cdot(3 h)^{6}+7 \cdot(4 h)^{6}\right)+C 6!
$$

and we are interested in finding C.

```
In [1]: from sympy import *
    init_printing()
    h,C=symbols('h C')
    integral = (4*h)**7/7
    quadrature = 2*h/45*(32*h**6 + 12*(2*h)**6 + 32*(3*h)**6 + 7*(4*h)**6)
    simplify(integral-quadrature)
```

Out [1]:

$$
-\frac{128 h^{7}}{21}
$$

Thus $C=-128 h^{7} /(21 \cdot 6!)=-8 h^{7} / 945$

4 Exercise 5.4.1

Apply Adaptive Quadrature by hand, using the Trapezoid Rule with tolerance $T O L=0.05$ to approximate the integrals. Find the approximation error.

Solution

(a) In this case, $f(x)=x^{2}, a_{0}=0, b_{0}=1$.

We begin with $n=1$ interval, $a=a_{0}, b=b_{0}$. We will use $S[a, b]$ to denote the Trapezoid quadrature applied on the interval $[a, b]$.
$c=(a+b) / 2, S[a, b]=\left(0^{2}+1^{2}\right) / 2=1 / 2, S[a, c]=\left(0^{2}+(1 / 2)^{2}\right) / 4=1 / 16, S[c, b]=\left((1 / 2)^{2}+1^{2}\right) / 4=5 / 16$. $|S[a, b]-S[a, c]-S[c, b]|=1 / 8=0.125<3 \cdot 0.05 \cdot\left((b-a) /\left(b_{0}-a_{0}\right)\right)=0.15$. Thus we stop with the approximation $S[a, c]+S[c, b]=3 / 8=0.375$ and an error estimate $-(S[a, b]-S[a, c]-S[c, b]) / 3=-1 / 24 \approx$ -0.0417 .

The actual integration error is $\int_{0}^{1} x^{2}-3 / 8=1 / 3-3 / 8=-1 / 24$. Our estimate is exact because $f^{\prime \prime}$ is constant in this case, thus the approximate equation (5.38) in the book is actually exact.
(b) $f(x)=\cos (x), a_{0}=0, b_{0}=\pi / 2$.
$S[0, \pi / 2]=(1+0) / 2=1 / 2, S[0, \pi / 4]=(1+1 / \sqrt{2}) / 4 \approx 0.42678, S[\pi / 4, \pi, 2]=(1 / \sqrt{2}+0) / 4 \approx 0.17678$. $|S[a, b]-S[a, c]-S[c, b]|=|1 / 4-1 /(2 \sqrt{2})| \approx 0.104<3 \cdot 0.05 \cdot 1=0.15$. Thus we stop with the approximation $S[a, c]+S[c, b]=1 / 4+1 /(2 \sqrt{2}) \approx 0.60355$ and an error estimate $-(S[a, b]-S[a, c]-S[c, b]) / 3=1 /(6 \sqrt{2})-$ $1 / 12 \approx 0.0345$, whereas the actual integration error is $\int_{0}^{\pi / 2} \cos (x)-1 / 4-1 /(2 \sqrt{2})=1-1 / 4-1 /(2 \sqrt{2}) \approx 0.396$.

Thus the adaptive quadrature underestimates the error in this case. The problem is the assumption made in equation (5.38) is not realistic in this case.
(c) In this case, $f(x)=\exp (x), a_{0}=0, b_{0}=1$.
$S[0,1]=(1+e) / 2 \approx 1.85914, S[0,0.5]=(1+\exp (0.5)) / 4 \approx 0.66218, S[0.5,1]=(\exp (0.5)+\exp (1)) / 4 \approx$ 1.09175. $|S[a, b]-S[a, c]-S[c, b]| \approx 0.1052<3 \cdot 0.05 \cdot\left((b-a) /\left(b_{0}-a_{0}\right)\right)=0.15$. Thus we stop with the approximation $S[a, c]+S[c, b] \approx 1.75393$ and an error estimate $-(S[a, b]-S[a, c]-S[c, b]) / 3=\approx-0.035$.

The actual integration error is $\int_{0}^{1} \exp (x)-(S[a, c]+S[c, b]) \approx-0.036$. Our estimate is quite good in this case.

5 Exercise 5.4.4

Develop an Adaptive Quadrature method for rule (5.28).

Solution

Let $c=(a+b) / 2, h=b-a$ and apply the quadrature on $[a, b],[a, c]$, and $[c, b]$ (we use the same notation as in the book):

$$
\begin{gathered}
\int_{a}^{b} f(x) \mathrm{d} x=S[a, b]+\frac{14 h^{5}}{45} f^{(4)}\left(c_{1}\right), \quad c_{1} \in[a, b] \\
\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x=S[a, c]+S[c, b]+\frac{14(h / 2)^{5}}{45} f^{(4)}\left(c_{2}\right)+\frac{14(h / 2)^{5}}{45} f^{(4)}\left(c_{3}\right), \quad c_{2} \in[a, c], c 3 \in[c, b]
\end{gathered}
$$

Further assuming that $f^{(4)}\left(c_{1}\right) \approx f^{(4)}\left(c_{2}\right) \approx f^{(4)}\left(c_{3}\right)$ we obtain:

$$
\begin{aligned}
\int_{a}^{b} f(x) \mathrm{d} x & =S[a, b]+\frac{14 h^{5}}{45} f^{(4)}\left(c_{1}\right) \\
\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x & \approx S[a, c]+S[c, b]+\frac{1}{16} \frac{14 h^{5}}{45} f^{(4)}\left(c_{1}\right)
\end{aligned}
$$

We can now subtract the second equation from the first to obtain:

$$
S[a, b]-S[a, c]-S[c, b] \approx 15 \frac{1}{16} \frac{14 h^{5}}{45} f^{(4)}\left(c_{1}\right)
$$

Thus the number $S[a, b]-S[a, c]-S[c, b]$ gives an approximation to 15 times the error of the quadrature $S[a, c]+S[c, b]$.

The rest is exactly the same as for other quadratures; one stops subdividing the interval when $\mid S[a, b]$ $S[a, c]-S[c, b] \mid<15 \cdot T O L \cdot(b-a) /\left(b_{\text {orig }}-a_{\text {orig }}\right)$ and returns $S[a, c]+S[c, b]$ as the approximation of the integral over the interval $[\mathrm{a}, \mathrm{b}]$.

6 Exercise 5.5.1

Approximate the integrals using $n=2$ Gaussian Quadrature. Compare with the correct value and give the approximation error.

Solution
Gaussian Quadrature with $n=2$ is defined by the points $x_{1,2}= \pm 1 / \sqrt{3}, w_{1,2}=1$.

```
In [2]: x1 = -1/sqrt(3)
    x2 = 1/sqrt(3)
    w1 = 1
    w2 = 1
```

(a)

In [3]: from sympy import * init_printing() x=symbols('x')
$\mathrm{f}=\mathrm{Lambda}(\mathrm{x}, \mathrm{x} * * 3+2 * \mathrm{x}$)
\# Exact integral
integrate ($\mathrm{f}(\mathrm{x}),(\mathrm{x},-1,1)$)
Out [3]:

In [4]: \# Numerical quadrature
$\mathrm{f}(\mathrm{x} 1) * \mathrm{w} 1+\mathrm{f}(\mathrm{x} 2) * \mathrm{w} 2$
Out [4]:

0
Thus the error is 0 , which agrees with the theory for Gaussian Quadratures being exact for polynomials up to degree $2 n-1$.
(b)

In [5]: $\mathrm{f}=\mathrm{Lambda}(\mathrm{x}, \mathrm{x} * * 4)$
\# Exact integral
integrate(f(x), (x,-1,1))
Out [5]:

In [6]: \# Numerical quadrature $\mathrm{f}(\mathrm{x} 1) * \mathrm{w} 1+\mathrm{f}(\mathrm{x} 2) * \mathrm{w} 2$

Out [6]:

In [7]: \# Approximation error 2/5-2/9

Out [7]:

0.177777777777778

(c)

In [8]: $f=\operatorname{Lambda}(x, \exp (x))$
\# Exact integral
integrate ($\mathrm{f}(\mathrm{x}),(\mathrm{x},-1,1)$)
Out [8]:

$$
-\frac{1}{e}+e
$$

In [9]: \# Numerical quadrature

$$
f(x 1) * \mathrm{w} 1+\mathrm{f}(\mathrm{x} 2) * \mathrm{w} 2
$$

Out [9]:

$$
e^{-\frac{\sqrt{3}}{3}}+e^{\frac{\sqrt{3}}{3}}
$$

In [10]: \# Approximation error
N (integrate $(\mathrm{f}(\mathrm{x}),(\mathrm{x},-1,1))-(\mathrm{f}(\mathrm{x} 1) * \mathrm{w} 1+\mathrm{f}(\mathrm{x} 2) * \mathrm{w} 2))$
Out [10]:
0.00770629937787234
(d)

In [11]: $\mathrm{f}=\operatorname{Lambda}(\mathrm{x}, \cos (\mathrm{pi} * \mathrm{x}))$

```
\# Exact integral
integrate (f(x), (x,-1,1))
```

Out[11]:

In [12]: \# Numerical quadrature

$$
\mathrm{f}(\mathrm{x} 1) * \mathrm{w} 1+\mathrm{f}(\mathrm{x} 2) * \mathrm{w} 2
$$

Out[12]:

$$
2 \cos \left(\frac{\sqrt{3} \pi}{3}\right)
$$

In [13]: \# Approximation error

$$
N(0-2 * \cos (\text { sqrt }(3) * \mathrm{pi} / 3))
$$

Out[13]:

7 Exercise 5.5.7

Show that the Legendre polynomials $p_{1}(x)=x$ and $p_{2}(x)=x^{2}-1 / 3$ are orthogonal on $[-1,1]$.
Solution $\int_{-1}^{1} p_{1}(x) p_{2}(x) \mathrm{d} x=\int_{-1}^{1}\left(x^{3}-x / 3\right) \mathrm{d} x=0$ because $x^{3}-x / 3$ is an odd function.

8 Exercise 5.5.8

Compute Legendre polynomials up to degree 3.

Solution

Legendre polynomials are given by the expression

$$
p_{i}(x)=\frac{1}{2^{i} i!} \frac{\mathrm{d}}{\mathrm{~d} x^{i}}\left[\left(x^{2}-1\right)^{i}\right] .
$$

Thus

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{1}(x)=1 / 2\left[\left(x^{2}-1\right)\right]^{\prime}=x \\
& p_{2}(x)=1 /(4 \cdot 2)\left[\left(x^{2}-1\right)^{2}\right]^{\prime \prime}=1 / 8\left[x^{4}-2 x^{2}+1\right]^{\prime \prime}=1 / 8\left[12 x^{2}-4\right]=3 / 2\left(x^{2}-3\right), \\
& p_{3}(x)=1 /(8 \cdot 6)\left[\left(x^{2}-1\right)^{3}\right]^{\prime \prime \prime}=1 / 48\left[x^{6}-3 x^{4}+3 x^{2}-1\right]^{\prime \prime \prime}=1 / 48\left[120 x^{3}-72 x\right]=5 / 2\left[x^{3}-3 / 5 x\right]
\end{aligned}
$$

9 Exercise 5.5.9

Verify the coefficients c_{i} and x_{i} in Table 5.1 for degree $n=3$.

Solution

We have computed $p_{3}(x)=5 / 2 x\left(x^{2}-3 / 5\right)$ in Exercise 5.5.8. This immediatly implies that $p_{3}(0)=$ $p_{3}(\pm \sqrt{3 / 5})=0$ confirming the roots listed in Table 5.1.

The coefficients c_{i} are obtained by integrating the Lagrange polynomials. For example,

$$
L_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}=\frac{(x+\sqrt{3 / 5})(x-\sqrt{3 / 5})}{(0+\sqrt{3 / 5})(0-\sqrt{3 / 5})}=1-\frac{5}{3} x^{2}
$$

and therefore

$$
c_{2}=\int_{-1}^{1}\left[1-5 / 3 x^{2}\right] \mathrm{d} x=\left[x-5 / 9 x^{3}\right]_{x=-1}^{x=1}=2-10 / 9=8 / 9
$$

Similarly

$$
L_{1,3}(x)=\frac{(x-0)(x \mp \sqrt{3 / 5})}{(\mp \sqrt{3 / 5}-0)(\mp \sqrt{3 / 5} \mp \sqrt{3 / 5})}=\frac{x(x \mp \sqrt{3 / 5})}{2 \cdot 3 / 5}
$$

and therefore

$$
c_{1,3}=\frac{5}{6} \int_{-1}^{1}\left[x^{2} \mp x \sqrt{3 / 5}\right] \mathrm{d} x=\frac{5}{6}\left[x^{3} / 3 \mp \sqrt{3 / 5} x^{2} / 2\right]_{x=-1}^{x=1}=\frac{5}{6} \frac{2}{3}=\frac{5}{9} .
$$

10 Computer exercise 5.2.8

Answers:
(a) 1.547866
(b) 1.277978
(c) 1.277978

11 Computer exercise 5.2.10

See the file uniform_refinement.m available on the wiki. Adapt the code to use Simpson's rule instead of Trapezoid.

