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DEFINITION 1.3

» EXAMPLE 1.2

break

end

if sign(fc)*sign(fa)<0 %a and ¢ make the new interval
b=c; fb=fc;

else %c and b make the new interval
a=c; fa=fc;

end

end

xc=(a+b)/2; $new midpoint is best estimate

To use bisect .m, first define a MATLAB function by:

>> f=@(x) x"3+x-1;

This command actually defines a “function handle” £, which can be used as input for other
MATLAB functions. See Appendix B for more details on MATLAB functions and function
handles. Then the command

» xc=bisect (£,0,1,0.00005)

returns a solution correct to a tolerance of 0.00005.

1:1 ?_‘2_ Iiow accurate and how fa.f.t?_ ]

If [a, b] is the starting interval, then after n bisection steps, the interval [a,, b,] has length
(b — a)/2". Choosing the midpoint x, = (a, + b,)/2 gives abest estimate of the solution r,
which is within half the interval length of the true solution. Summarizing, after n steps of
the Bisection Method, we find that

. b—a
Solution error = |x, — r| < T (L.
and
Function evaluations = n + 2. (1.2)

A good way to assess the efficiency of the Bisection Method is to ask how much
accuracy can be bought per function evaluation. Each step, or each function evaluation,
cuts the uncertainty in the root by a factor of two.

A solution is correct within p decimal places if the error is less than 0.5 x 1077, o

Use the Bisection Method to find a root of f(x) = cosx — x in the interval [0, 1] to within
six correct places.

First we decide how many steps of bisection are required. According to (1.1), the
error after n steps is (b — a)/2"*t! = 1/2"*+!, From the definition of p decimal places, we
require that

1
W < 0.5 x 10_6

6 6

Therefore, n = 20 steps will be needed. Proceeding with the Bisection Method, the follow-
ing table is produced:

e ]
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k ax f(ar) Ck S (ex) by £ ()
0 | 0.000000 + 0.500000 + 1.000000 -
1 | 0.500000 + 0.750000 - 1.000000 -
2 | 0.500000 + 0.625000 + 0.750000 -
3 | 0.625000 + 0.687500 + 0.750000 -
4 | 0.687500 + 0.718750 + 0.750000 -
5 | 0.718750 + 0.734375 + 0.750000 -
6 | 0.734375 + 0.742188 - 0.750000 —
7 | 0.734375 + 0.738281 + 0.742188 —
8 | 0.738281 + 0.740234 - 0.742188 -
9 | 0.738281 + 0.739258 - 0.740234 —
10 | 0.738281 + 0.738770 + 0.739258 -
11 | 0.738769 + 0.739014 + 0.739258 -
12 1 0.739013 + 0.739136 — 0.739258 -
13 | 0.739013 + 0.739075 + 0.739136 —
14 | 0.739074 + 0.739105 - 0.739136 -
15 | 0.739074 + 0.739090 - 0.739105 -
16 | 0.739074 + 0.739082 =+ 0.739090 -
17 | 0.739082 + 0.739086 - 0.739090 -
18 | 0.739082 + 0.739084 + 0.739086 -
19 | 0.739084 + 0.739085 - 0.739086 -
20 | 0.739084 + 0.739085 — 0.739085 -
The approximate root to six correct places is 0.739085. <

For the Bisection Method, the question of how many steps to run is a simple one—just
choose the desired precision and find the number of necessary steps, as in (1.1). We will
see that more high-powered algorithms are often less predictable and have no analogue to
(1.1). In those cases, we will need to establish definite “stopping criteria” that govern the
circumstances under which the algorithm terminates. Even for the Bisection Method, the
finite precision of computer arithmetic will put a limit on the number of possible correct
digits. We will look into this issue further in Section 1.3.

Use the Intermediate Value Theorem to find an interval of length one that contains a root of the
equation. () x3 =9 (b) 3x> + x2 =x + 5 (c)cos’x + 6 =1x

Use the Intermediate Value Theorem to find an interval of length one that contains a root of the
equation. (a) B +x=10)sinx=6x+5C)Inx+x2=3

Consider the equations in Exercise 1. Apply two steps of the Bisection Method to find an
approximate root within 1/8 of the true root.

Consider the equations in Exercise 2. Apply two steps of the Bisection Method to find an
approximate root within 1/8 of the true root.

Consider the equation x* = x> + 10.

(a) Find an interval [a, b] of length one inside which the equation has a solution.

(b) Starting with [a, b], how many steps of the Bisection Method are required to calculate the
solution within 10~10? Answer with an integer.

Suppose that the Bisection Method with starting interval [—2, 1] is used to find a root of the
function f(x) = 1/x. Does the method converge to a real number? Is it the root?
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1.1 Computer Problems

1.

Use the Bisection Method to find the root to six correct decimal places. (a) =9
M3} +xt=x+5C)cos?x +6=x

Use the Bisection Method to find the root to eight correct decimal places. (a) Prx=1
(b)sinx =6x +5(c) Inx 4+ x> =3

Use the Bisection Method to locate all solutions of the following equations. Sketch the
function by using MATLAB's plot command and identify three intervals of length one that
contain a root. Then find the roots to six correct decimal places. (a) 23 —6x—1=0
e 24+x3—x=0@)1+5x—6x3—e =0

Calculate the square roots of the following numbers to eight correct decimal places by using
the Bisection Method to solve x2 — A = 0, where A is (a) 2 (b) 3 (c) 5. State your starting
interval and the number of steps needed.

Calculate the cube roots of the following numbers to eight correct decimal places by using the
Bisection Method to solve x3 — A =0, where A is (a) 2 (b) 3 (c) 5. State your starting interval
and the number of steps needed.

Use the Bisection Method to calculate the solution of cosx = sinx in the interval {0, 1] within
six correct decimal places.

Use the Bisection Method to find the two real numbers x, within six correct decimal places,
that make the determinant of the matrix

% LN

3 x
x 6
8 9
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equal to 1000. For each solution you find, test it by computing the corresponding determinant
and reporting how many correct decimal places (after the decimal point) the determinant has
when your solution x is used. (In Section 1.2, we will call this the “backward error” associated
with the approximate solution.) You may use the MATLAB command det to compute the
determinants.

The Hilbert matrix is the n X n matrix whose jjthentry is 1/(i + j — 1). Let A denote the

5 x 5 Hilbert matrix. Its largest eigenvalue is about 1.567. Use the Bisection Method to decide
how to change the upper left entry A;; to make the largest eigenvalue of A equal to 7.
Determine Aj) within six correct decimal places. You may use the MATLAB commands hilb,
pi, eig, and max to simplify your task.

Find the height reached by 1 cubic meter of water stored in a spherical tank of radius 1 meter.
Give your answer =1 mm. (Hint: First note that the sphere will be less than half full. The
volume of the bottom H meters of a hemisphere of radius R is m H 2(R-1 /3H).)

1.2 FIXED-POINT ITERATION

Use a calculator or computer to apply the cos function repeatedly to an arbitrary starting
number. That is, apply the cos function to the starting number, then apply cos to the
result, then to the new result, and so forth. (If you use a calculator, be sure it is in radian

DEFINITION 1.4
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mode.) Continue until the digits no longer change. The resulting sequence of numbers
converges to 0.7390851332, at least to the first 10 decimal places. In this section, our goal
is to explain why this calculation, an instance of Fixed-Point Iteration (FPI), converges.
While we do this, most of the major issues of algorithm convergence will come under
discussion.

1.2.1 Fixed points of a function
The sequence of numbers produced by iterating the cosine function appears to converge to
a number r. Subsequent applications of cosine do not change the number. For this input,

the output of the cosine function is equal to the input, or cosr =r.
The real number 7 is a fixed point of the function g if g(r) =r. o

The number r =0.7390851332 is an approximate fixed point for the function
g(x) = cosx. The function g(x) = x3 has three fixed points, r = —1,0, and 1.

We used the Bisection Method in Example 1.2 to solve the equationcosx — x = 0. The
fixed-point equation cosx = x is the same problem from a different point of view. When the
output equals the input, that number is a fixed point of cosx, and simultaneously a solution
of the equation cosx — x = 0.

Once the equation is written as g(x) = x, Fixed-Point Iteration proceeds by starting
with an initial guess xg and iterating the function g.

Fixed-Point Iteration

xo = initial guess
xiv1 =gxp)fori =0,1,2,...

Therefore,
x1 = g(xo0)
x2 = g(x1)
x3 = g(x2)

and so forth. The sequence x; may or may not converge as the number of steps goes to
infinity. However, if g is continuous and the x; converge, say, to a number r, then r is a
fixed point. In fact, Theorem 0.5 implies that

gir)=g (_lim x,-) = lim g(x;) = lim x4 =r. (1.3)
i—00 -0 =00

The Fixed-Point Iteration algorithm applied to a function g is easily written in
MATLAB code:

$Program 1.2 Fixed-Point Iteration

$Computes approximate solution of g(x)=x
$Input: function handle g, starting guess x0,
$ number of iteration steps k

$Output: Approximate solution xc

function xc=£fpi(g, x0, k)

x(1)=x0;
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1.2 Exercises

Before finishing the calculation, let’s decide whether it will converge. Accord-
ing to Theorem 1.6, we need S < 1. For this iteration, g(x) = 1/2(x + 2/x) and g'(x) =
1/2(1 — 2/x?). Evaluating at the fixed point yields

1 2
'"W2)y=={1- =0, 1.15
¢/ 2( (ﬁ)z) (19

so S = 0. We conclude that the FPI will converge, and very fast.
Exercise 18 asks whether this method will be successful in finding the square root
of an arbitrary positive number. |

1.2.4 Stopping criteria

Unlike the case of bisection, the number of steps required for FPI to converge within a given
tolerance is rarely predictable beforehand. In the absence of an error formula like (1.1) for
the Bisection Method, a decision must be made about terminating the algorithm, called a
stopping criterion.

For a set tolerance, TOL, we may ask for an absolute error stopping criterion

Ixi+1 — xi| < TOL (1.16)
or, in case the solution is not too near zero, the relative error stopping criterion

[xig1 — Xl

< TOL. (1.17)
| %41

A hybrid absolute/relative stopping criterion such as

|xi+1 — x;l

< TOL 1.18
max(xia1l, 6) (1.18)

for some 6 > 0 is often useful in cases where the solution is near 0. In addition, good FPI
code sets a limit on the maximum number of steps in case convergence fails. The issue of
stopping criteria is important, and will be revisited in a more sophisticated way when we
study forward and backward error in Section 1.3.

The Bisection Method is guaranteed to converge linearly. Fixed-Point Iteration is only
locally convergent, and when it converges it is linearly convergent. Both methods require one
function evaluation per step. The bisection cuts uncertainty by 1/2 for each step, compared
with approximately S = |g’(r)| for FPI. Therefore, Fixed-Point Iteration may be faster or
slower than bisection, depending on whether S is smaller or larger than 1/2. In Section 1.4,
we study Newton's Method, a particularly refined version of FPI, where S is designed to
be zero.

Find all fixed points of the following g(x).
3
(a); ®)x2—2x+2 (c)x2—4x+2

Find all fixed points of the following g(x).

x+6 8+ 2x 5
@2 O OF

Show that 1, 2, and 3 are fixed points of the following g(x).
X4+x-6 6+ 6x% — x3

@="15 ® 1

10,

1.

12

13.

14.

15.

16.

17.

18.
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Show that —1, 0, and 1 are fixed points of the following g(x).
4x x? —5x

(a)x2+3 (b)x2+x—6

For which of the following g(x) is r = +/3 a fixed point?

@26 =2 5w = =

For which of the following g(x) is r = /5 a fixed point?

@s0=1" o=y +] @ew=r-5 @ew=1+

Use Theorem 1.6 to determine whether Fixed-Point Iteration of g(x) is locally convergent to
the given fixed point r. (a) g(x) = 2x — DA, r =1(b) g(x) = x> + 1)/2,r =1

(©)gx) =sinx + x,r =0

2
+2 ©ew=r-x D@ =1+—
X x+1

Use Theorem 1.6 to determine whether Fixed-Point Iteration of g(x) is locally convergent to
the given fixed point r. (a) g(x) = (2x — 1)/x2,r =lMbgx)=cosx+nm+1,r=m
©gx)=e¥*~-1,r=0

Find each fixed point and decide whether Fixed-Point Iteration is locally convergent to it.
@ g(x) =3x2 + dx 0) g(x) =x? — }x + 3

Find each fixed point and decide whether Fixed-Point Iteration is locally convergent to it.
@gx) =x>—3x+ 3 B gl) =x + §x — 3

Express each equation as a fixed-point problem x = g(x) in three different ways.
@x3—x+e =0(0b)3x72 493 =x?

Consider the Fixed-Point Iteration x — g(x) = x2 — 0.24. (2) Do you expect Fixed-Point
Iteration to calculate the root —0.2, say, to 10 or to correct decimal places, faster or slower than
the Bisection Method? (b) Find the other fixed point. Will FPI converge to it?

(a) Find all fixed points of g(x) =0.39 — x2. (b) To which of the fixed-points is Fixed-Point
Iteration locally convergent? (c) Does FPI converge to this fixed point faster or slower than the
Bisection Method?

Which of the following three Fixed-Point Iterations converge to v/27 Rank the ones that

converge from fastest to slowest.

2 2 3 1
(B)x—>§x+§ (C)x——>zx+£

Which of the following three Fixed-Point Iterations converge to +/5? Rank the ones that
converge from fastest to slowest.

A x — —x+—
2 x

x 5 x+35

—s 4= C) x — —=

B r—=at% ©r=7
Which of the following three Fixed-Point Iterations converge to the cube root of 4? Rank the

ones that converge from fastest to slowest.

2 3x 1 2 4
(A) glx) = W (B) gx) = T + el ©€) gx)= 3% + 2

Check that 1/2 and —1 are roots of f(x) = 2x% 4+ x — 1 = 0. Isolate the x? term and solve for
x to find two candidates for g(x). Which of the roots will be found by the two Fixed-Point
Tterations?

A) x — -x+ —
5 x

Prove that the method of Example 1.6 will calculate the square root of any positive number.

41




42

42 | CHAPTER 1 Solving Equations

19.

20.

21.

22.

23,

24,

25.

26.

27.

28.

29,

30.

31.

32.

Explore the idea of Example 1.6 for cube roots. If x is a guess that is smaller than A!/3, then
A/x? will be larger than A!/3, so that the average of the two will be a better approximation
than x. Suggest a Fixed-Point Iteration on the basis of this fact, and use Theorem 1.6 to decide
whether it will converge to the cube root of A.

Improve the cube root algorithm of Exercise 19 by reweighting the average. Setting g(x) =
wx + (1 — w)A/x2 for some fixed number 0 < w < 1, what is the best choice for w?

Consider Fixed-Point Iteration applied to g(x) = 1 — 5x + $x? — 3x3. (a) Show that
1 —/3/5,1, and 1 + /375 are fixed points. (b) Show that none of the three fixed points is
locally convergent. (Computer Problem 7 investigates this example further.)

Show that the initial guesses 0, 1, and 2 lead to a fixed point in Exercise 21. What happens to
other initial guesses close to those numbers?

Assume that g(x) is continuously differentiable and that the Fixed-Point Iteration g(x) has
exactly three fixed points, r1 < rp < r3. Assume also that |g'(r))| = 0.5 and |g’(r3)] = 0.5.
List all values of |g’(r;)| that are possible under these conditions.

Assume that g is a continuously differentiable function and that the Fixed-Point Iteration g(x)
has exactly three fixed points, —3, 1, and 2. Assume that g’(—3) = 2.4 and that FPI started
sufficiently near the fixed point 2 converges to 2. Find g’(1).

Prove the variant of Theorem 1.6: If g is continuously differentiable and |g’'(x)] < B < 1 on an
interval [a, b] containing the fixed point r, then FPI converges to r from any initial guess in
[a, b].

Prove that a continuously differentiable function g(x) satisfying |g’(x)| < 1 on a closed
interval cannot have two fixed points on that interval.

Consider Fixed-Point Iteration with g(x) = x — x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < xp < 1, then xp > x| > x3... > 0. (c) Show that FPI converges to
r =0, while g’(0) = 1. (Hint: Use the fact that every bounded monotonic sequence converges
to a limit.)

Consider Fixed-Point Iteration with g(x) = x + x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < xp < 1, then xp < x; < x3 <.... (c) Show that FPI fails to
converge to a fixed point, while g’(0) = 1. Together with Exercise 27, this shows that FPI may
converge to a fixed point r or diverge from r when |g'(r)| = 1.

Consider the equation x3 4+ x —2 =0, with root r = 1. Add the term cx to both sides and
divide by c to obtain g(x). (a) For what c is FPI locally convergent to r = 1?(b) For what ¢
will FPI converge fastest?

Assume that Fixed-Point Iteration is applied to a twice continuously differentiable function
g(x) and that g’(r) = O for a fixed point r. Show that if FPI converges to r, then the error
obeys lim;, oo (e;+1)/€;2 = M, where M = |g"(r)}/2.

Define Fixed-Point Iteration on the equation x? + x = 5/16 by isolating the x term. Find both
fixed points, and determine which initial guesses lead to each fixed point under iteration.
(Hint: Plot g(x), and draw cobweb diagrams.)

Find the set of all initial guesses for which the Fixed-Point Iteration x — 4/9 — x? converges
to a fixed point.

]
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Letg(x)=a + bx + ¢x? for constants a, b, and c. (a) Specify one set of constants a, b, and ¢
for which x = 0 is a fixed-point of x = g(x) and Fixed-Point Iteration is locally convergent to
0. (b) Specify one set of constants a, b, and ¢ for which x = 0 is a fixed-point of x = g(x) but
Fixed-Point Iteration is not locally convergent to 0.

1.2 Computer Problems

1.

Apply Fixed-Point Iteration to find the solution of each equation to eight correct decimal
places. (@) x> =2x + 2 (b) ¥ + x =7 (c) &* + sinx =4.

Apply Fixed-Point Iteration to find the solution of each equation to eight correct decimal
places. (@) x3 + x =1 (b) sinx =6x + 5(c) Inx + x> =3

Calculate the square roots of the following numbers to eight correct decimal places by using
Fixed-Point Iteration as in Example 1.6: (a) 3 (b) 5. State your initial guess and the number of
steps needed.

Calculate the cube roots of the following numbers to eight correct decimal places, by using
Fixed-Point Iteration with g(x) = (2x + A/xz) /3, where A is (a) 2 (b) 3 (c) 5. State your
initial guess and the number of steps needed.

Exampie 1.3 showed that g(x) = cosx is a convergent FPI. Is the same true for g(x) = cos®x?

Find the fixed point to six correct decimal places, and report the number of FPI steps needed.
Discuss local convergence, using Theorem 1.6.

Derive three different g (x) for finding roots to six correct decimal places of the following
f(x) = 0 by Fixed-Point Iteration. Run FPI for each g(x) and report results, convergence or
divergence. Each equation f(x) = O has three roots. Derive more g(x) if necessary until all
roots are found by FPI. For each convergent run, determine the value of S from the errors
e;+1/ei, and compare with S determined from calculus as in (1.11). () f(x) = 23 —

6x — 1) fx)=e"2+x3 —x(c) f(x) =14 5x —6x3 — &

Exercise 21 considered Fixed-Point Iteration applied to g(x) =1 — 5x + l2§x2 - %x3 =x.

Find initial guesses for which FPI (a) cycles endlessly through numbers in the interval (0, 1)
(b) the same as (a), but the interval is (1, 2) (c) diverges to infinity. Cases (a) and (b) are
examples of chaotic dynamics. In all three cases, FPI is unsuccessful.

1.3 LIMITS OF ACCURACY

One of the goals of numerical analysis is to compute answers within a specified level of
accuracy. Working in double precision means that we store and operate on numbers that are
kept to 52-bit accuracy, about 16 decimal digits.

Can answers always be computed to 16 correct significant digits? In Chapter 0, it
was shown that, with a naive algorithm for computing roots of a quadratic equation, it
was possible to lose some or all significant digits. An improved algorithm eliminated
the problem. In this section, we will see something new—a calculation that a double-
precision computer cannot make to anywhere near 16 correct digits, even with the best
algorithm.
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SPOTLIGHT ON

1.3 Exercises

Conditioning This is the first appearance of the concept of condition number, a
measure of error magnification. Numerical analysis is the study of algorithms, which take data
defining the problem as input and deliver an answer as output. Condition number refers to
the part of this magnification that is inherent in the theoretical problem itself, irrespective of
the particular algorithm used to solve it.

It is important to note that the error magnification factor measures only magnification due
to the problem, Along with conditioning, there is a parallel concept, stability, that refers to the
magnification of small input errors due to the algorithm, not the problem itself. An algorithm
is called stable if it always provides an approximate solution with small backward error. If the
problem is well-conditioned and the algorithm is stable, we can expect both small backward

and forward error.

The preceding error magnification examples show the sensitivity of root-finding to a
particular input change. The problem may be more or less sensitive, depending on how
the input change is designed. The condition number of a problem is defined to be the
maximum error magnification over all input changes, or at least all changes of a prescribed
type. A problem with high condition number is called ill-conditioned, and a problem with
a condition number near 1 is called well-conditioned. We will return to this concept when
we discuss matrix problems in Chapter 2.

Find the forward and backward error for the following functions, where the root is 3/4 and the
approximate root is x, = 0.74: (a) f(x) =4x —3 (b) f(x) = (4x — 3)?

© f(x) = (4x =33 (d) F(x) = (4x — 3!/

Find the forward and backward error for the following functions, where the root is 1/3 and the
approximate root is x, = 0.3333: (a) f(x) =3x — 1 (b) f(x) = (3x — 1)?

© fx)=Gx — 1)) flx)=GBx - D'/

(a) Find the multiplicity of the root r = 0 of f(x) = 1 — cosx. (b) Find the forward and
backward errors of the approximate root x, = 0.0001.

(a) Find the multiplicity of the root r = 0 of f(x) = x?sinx?. (b) Find the forward and
backward errors of the approximate root x, = 0.01.

Find the relation between forward and backward error for finding the root of the linear function
f@x)=ax —b.

Let n be a positive integer. The equation defining the nth root of a positive number A is

x" — A =0. (a) Find the multiplicity of the root. (b) Show that, for an approximate nth root
with small forward error, the backward error is approximately nA"~1/" times the forward
€ITor.

Let W (x) be the Wilkinson polynomial. (a) Prove that W’(16) = 15!4! (b) Find an analogous
formula for W’/(j), where j is an integer between 1 and 20.

Let f(x) = x" — ax"~!, and set g(x) = x". (a) Use the Sensitivity Formula to give a
prediction for the nonzero root of fe(x) = x" — ax™! + ex™ for small e. (b) Find the nonzero
root and compare with the prediction.

1.4 Newton's Method | 51

1.3 Computer Problems

1.

Let f(x) = sinx — x. (a) Find the multiplicity of the root r = 0. (b) Use MATLAB’s fzero
command with initial guess x = 0.1 to locate a root. What are the forward and backward errors
of fzero’s response?

3 3

Carry out Computer Problem 1 for f(x) = sinx” — x~.

(a) Use fzero to find the root of f(x) = 2xcosx — 2x + sinx3 on [-0.1, 0.2]. Report the
forward and backward errors. (b) Run the Bisection Method with initial interval [—0.1, 0.2)
to find as many correct digits as possible, and report your conclusion.

(a) Use (1.21) to approximate the root near 3 of f.(x) = (1 + ex3 ~3x2+x - 3fora
constant €. (b) Setting € = 1073, find the actual root and compare with part (a).

Use (1.21) to approximate the root of f(x) = (x — 1)(x — 2)(x — 3)(x — 4) — 107 6x6
near r = 4. Find the error magnification factor. Use £zero to check your
approximation.

Use the MATLAB command fzero to find the root of the Wilkinson polynomial near x = 15
with a relative change of € =2 x 107! in the x!3 coefficient, making the coefficient slightly
more negative. Compare with the prediction made by (1.21).

1.4 NEWTON’S METHOD

Newton’s Method, also called the Newton—-Raphson Method, usually converges much faster
than the linearly convergent methods we have seen previously. The geometric picture of
Newton’s Method is shown in Figure 1.8. To find a root of f(x) =0, a starting guess
xp is given, and the tangent line to the function f at xg is drawn. The tangent line will
approximately follow the function down to the x-axis toward the root. The intersection
point of the line with the x-axis is an approximate root, but probably not exact if f curves.
Therefore, this step is iterated.

Figure 1.8 One step of Newton’s Method. Starting with xg, the tangent line to the
curve y=f(x} is drawn. The intersection point with the x-axis is x;, the next approxima-
tion to the root.

From the geometric picture, we can develop an algebraic formula for Newton’s

Method. The tangent line at xg has slope given by the derivative f’(xp). One point
on the tangent line is (xg, f(xp)). The point-slope formula for the equation of a line is

51




|
1
] (
58 | CHAPTER 1 Solving Equations | 1.4 Newton's Method | 59
fi

We know that 0is a multiple root. While the backward error is driven near €mach by Newton’s lz @x5 244 4+ 242 —x=0;r=—1,r=0,r =1(0)2x* =553 + 32+ x — 1 = 0;
Method, the forward error, equal to x;, is several orders of magnitude larger. ' ri r=-1/2,r=1
Newton’s Method, like FPI, may not converge to a root. The next example shows just 4

o ible nonvonvergent behaviors 4. Estimate e; as in Exercise 3. () 32x> — 32x2 — 6x +9=0;r = —1/2,r =3/4
one of its possible n .

l ®xF—x2—5x—-3=0r=-1,r=3

» EXAMPLE 1.15  Apply Newton’s Method to f(x) = 4x* — 6x2 — 11/4 with starting guess xo = 1/2. 5, Consider the oquation 8 — 12+ 4 65 — x — 0, For each of the two solutions x = 0 and
This function has roots, since it is continuous, negative at x =0, and goes to I x = 1/2, decide which will converge faster (say, to eight-place accuracy), the Bisection
positive infinity for large positive and large negative x. However, no root will be found for Method or Newton’s Method, without running the calculation.

the starting guess xo = 1/2, as shown in Figure 1.10. The Newton formula is i 6. Sketch a function f and initial guess for which Newton’s Method diverges.

4 2 11
dx; — 6x; — 7

(1.33) | 7. Let f(x) =x* — 7x3 4 18x2 — 20x + 8. Does Newton’s Method converge quadratically to
l6xi3 — 12x; '

Xiyl =Xi — . . .
i+l ! the root r = 2? Find lim e;41/e;, where e; denotes the error at step i.
=00

Substitution gives x = —1/2, and then x = 1/2 again. Newton's Method alternates on 8. Prove that Newton’s Method applied to f(x) = ax + b converges in one step.
i the two nonroots 1/2 and —1/2, and fails to find a root.
b / / b 9. Show that applying Newton’s Method to f(x) = x? — A produces the iteration of

Example 1.6.

r 10. Find the Fixed-Point Iteration produced by applying Newton’s Method to f(x) = x3 — A. See
. - i Exercise 1.2.10.

11.  Use Newton’s Method to produce a quadratically convergent method for calculating the nth
root of a positive number A, where n is a positive integer. Prove quadratic convergence.

}" 12.  Suppose Newton’s Method is applied to the function f(x) = 1/x. If the initial guess is xg = 1,
] find xs0.

13. (a) The function f(x) = x3 — 4x hasarootat r = 2. If the error ¢; = x; — r after four steps of
Newton'’s Method is e4 = 1075, estimate es. (b) Apply the same question as (a) to the root
r = 0. (Caution: The usual formula is not useful.)

. 14, Let g(x) =x — f(x)/f'(x) denote the Newton’s Method iteration for the function f. Define
'_\ h(x) = g(g(x)) to be the result of two successive steps of Newton’s Method. Then

l h (x) = g'(g(x))g’ (x) according to the Chain Rule of calculus. (a) Assume that c is a fixed
Figure 1.10 Failure of Newton’s Method in Example 1.15. The iteration alternates Poin[”ofh, but not of g, as in E)fam‘ple 1:15' S.how that if ¢ is an inflection point of £ (x), that
between 1/2 and —1/2, and does not converge to a root < | is, f”(x) =0, then the fixed point iteration 4 is locally convergent to c. It follows that for

' initial guesses near ¢, Newton's Method itself does not converge to a root of f, but tends
Newton’s Method can fail in other ways. Obviously, if f'(x;) =0 at any iteration ¢ toward the oscillating sequence {c, g(c)} (b) Verify that the stable oscillation described in

step, the method cannot continue. There are other examples where the iteration diverges to (a) actually occurs in Example 1.15. Computer Problem 14 elaborates on this example,
infinity (see Exercise 6) or mimics a random number generator (see Computer Problem 13).
Although not every initial guess leads to convergence to a root, Theorems 1.11 and 1.12

f -5

guarantee a neighborhood of initial guesses surrounding each root for which convergence 5 1.4 Computer Problems
to that root is assured. # . ‘
% 1. Each equation has one root. Use Newton’s Method to approximate the root to eight correct
. i decimal places. (a) x> =2x + 2 (b) * + x =7 (c) €* + sinx =4
1.4 Exercises f
1. Apply two steps of Newton’s Method with initial guess xo = 0. (a) x> +x —2=0 F: 2 dEaCﬁ e?ualtlon h%(iS)onse real r_oolt-al)ls§ Nevitosn s Mseth;?nto aiprgﬁrgate the root to eight correct
(b)x4——x2+x—1=0(C)x2—x—1=0 i ecimal places. (a) x> + x =1 (b)sinx =6x +5(c)Inx + x° =
2. Apply two steps of Newton’s Method with initial guess xo = 1. (a) d+x2-1=0 __ 3. App}y New'tor'l s Method to find tl.le only root t? as much accuracy as possible, and find t.he
2 _ root’s multiplicity. Then use Modified Newton’s Method to converge to the root quadratically.
) x +1/(x+1)—3x=0(c)5x—10_0  con '
_ _ Report the forward and backward errors of the best approximation obtained from each method.
3. Use Theorem 1.11 or 1,12 to estimate the error e;+ in terms of the previous error e; as @) f(x) = 27x3 + 54x% + 36x + 8 ®) f(x) = 36x% — 1203 +37x2 — 12x + 1

Newton’s Method converges to the given roots. Is the convergence linear or quadratic?
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Carry out the steps of Computer Problem 3 for (a) f(x) = 251 —x2 -1
®) fx)=In@G —x)+x -2

A silo composed of a right circular cylinder of height 10 m surmounted by a hemispherical
dome contains 400 m? of volume. Find the base radius of the silo to four correct decimal
places.

A 10-cm-high cone contains 60 cm? of ice cream, including a hemispherical scoop on top. Find
the radius of the scoop to four correct decimal places.

Consider the function f(x) = gsin’ x + x5 — 2x* — x3 — 1 on the interval [—2, 2]. Plot the
function on the interval, and find all three roots to six correct decimal places. Determine which
roots converge quadratically, and find the multiplicity of the roots that converge linearly.

Carry out the steps of Computer Problem 7 for the function
f(x) =94cos3x — 24cosx + 177sin’x — 108 sin*x — 72cos3 xsin?x — 65 on the interval

[0,3].

Apply Newton’s Method to find both roots of the function f(x) = l4xe*~2 — 1272 —

7x3 4 20x2 — 26x + 12 on the interval [0, 3]. For each root, print out the sequence of iterates,
the errors e;, and the relevant error ratio ¢;+1 /e,.2 or ;11 /e; that converges to a nonzero limit.
Match the limit with the expected value M from Theorem 1.11 or § from Theorem 1.12.

Set f(x) = 54x6 + 45x5 — 102x* — 69x3 + 35x2 + 16x — 4. Plot the function on the
interval [—2, 2], and use Newton’s Method to find all five roots in the interval. Determine for
which roots Newton converges linearly and for which the convergence is quadratic.

The ideal gas law for a gas at low temperature and pressure is PV = nRT, where P is
pressure (in atm), V is volume (in L), T is temperature (in K), n is the number of moles of the
gas, and R = 0.0820578 is the molar gas constant. The van der Waals equation

n2a
(P + Tﬁ) (V = nb) =nRT

covers the nonideal case where these assumptions do not hold. Use the ideal gas law to
compute an initial guess, followed by Newton’s Method applied to the van der Waals equation
to find the volume of one mole of oxygen at 320 K and a pressure of 15 atm. For oxygen,

a = 1.36 L2-atm/mole? and b = 0.003183 L/mole. State your initial guess and solution with
three significant digits.

Use the data from Computer Problem 11 to find the volume of 1 mole of benzene vapor at 700
K under a pressure of 20 atm. For benzene, a = 18.0 L2-atm/mole? and b = 0.1154 L/mole.

(a) Find the root of the function f(x) = (1 — 3/ @x))H3. ) Apply Newton’s Method using an
initial guess near the root, and plot the first 50 iterates. This is another way Newton’s Method
can fail, by producing a chaotic trajectory. (c) Why are Theorems 1.11 and 1.12 not applicable?

() Fix real numbers a, b > 0 and plot the graph of f(x) = a®x* — 6abx? — 11b? for your
chosen values. Do not use a = 2, b = 1/2, since that case already appears in Example 1.15.
(b) Apply Newton’s method to find both the negative root and the positive root of f(x). Then
find intervals of positive initial guesses [d1,d>], where d, > d}, for which Newton’s Method:
(c) converges to the positive root, (d) converges to the negative root, (¢) is defined, but does
not converge to any root. Your intervals should not contain any initial guess where f "(x) =0,
at which Newton’s Method is not defined.
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1.5 ROOT-FINDING WITHOUT DERIVATIVES

Apart from multiple roots, Newton’s Method converges at a faster rate than the bisection
and FPI methods. It achieves this faster rate because it uses more information—in partic-
ular, information about the tangent line of the function, which comes from the function’s
derivative. In some circumstances, the derivative may not be available.

The Secant Method is a good substitute for Newton’s Method in this case. It replaces the
tangent line with an approximation called the secant line, and converges almost as quickly.
Variants of the Secant Method replace the line with an approximating parabola, whose
axis is either vertical (Muller’s Method) or horizontal (inverse quadratic interpolation), The
section ends with the description of Brent’s Method, a hybrid method which combines the
best features of iterative and bracketing methods.

1.5.1 Secant Method and variants

The Secant Method is similar to the Newton’s Method, but replaces the derivative by a
difference quotient. Geometrically, the tangent line is replaced with a line through the two
last known guesses. The intersection point of the “secant line” is the new guess.

An approximation for the derivative at the current guess x; is the difference quotient

fxi) = f(xiz1)

Xi — Xi—1

A straight replacement of this approximation for f’(x;) in Newton’s Method yields the
Secant Method.

Secant Method

X0, X1 = initial guesses
FOi)(xi = xi-1)

fori =
fGxi) = f(xic1) ori =123,

Xit] =X —

Unlike Fixed-Point Iteration and Newton’s Method, two starting guesses are needed to
begin the Secant Method.
It can be shown that under the assumption that the Secant Method converges to  and
f'(r) # 0, the approximate error relationship
o | SO
i+1 ~ m €iéi—1

holds and that this implies that

a—1

f'r)
2f'(r)

(4
€,

€41 = }

where & = (1 + +/5)/2 ~ 1.62. (See Exercise 6.) The convergence of the Secant Method
to simple roots is called superlinear, meaning that it lies between linearly and quadratically
convergent methods.
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