262

262 | CHAPTER 5 Numerical Differentiation and Integration

» EXAMPLE 5.9  Find the number of panels m necessary for the composite Simpson’s Rule to approximate

T
.\. sin?x dx
0

We require the error to satisfy

within six correct decimal places.

(r — O)h*

50 £ ()| < 0.5 x 1078,

Since the fourth derivative of sin®x is —8cos 2x, we need

Th* _6
am <0.5x 10
or h < 0.0435. Therefore, m = ceil(x/(2h)) = 37 panels will be sufficient. |

5.2.4 Open Newton-Cotes Methods

The so-calied closed Newton-Cotes Methods like Trapezoid and Simpson’s Rules require
input values from the ends of the integration interval. Some integrands that have a removable
singularity at an interval endpoint may be more easily handled with an open Newton—Cotes
Method, which does not use values from the endpoints. The following rule is applicable to
functions f whose second derivative f” is continuous on [a, b]:

Midpoint Rule
X1 bu
\ fx)dx =hf(w) + mm\\ﬁ, (5.26)
X0

where h = (x; — xp), w is the midpoint xg + %/2, and c is between xg and x;.

The Midpoint Rule is also useful for cutting the number of function evaluations needed.
Compared with the Trapezoid Rule, the closed Newton—Cotes Method of the same order, it
requires one function evaluation rather than two. Moreover, the error term is half the size
of the Trapezoid Rule error term.

The proof of (5.26) follows the same lines as the derivation of the Trapezoid Rule. Set
h = x; — xg. The degree 1 Taylor expansion of f(x) about the midpoint w = xo + #/2 of
the interval is

FG) = Fw) + (x — w)f(w) + W@ — W) (),

where ¢, depends on x and lies between xp and x;. Integrating both sides yields

Xy Xy 1 Xl
\ Fx)dx = (x; — x0) f(w) + 35\. (x —wydx + 5 e x — w)? dx
X0 xp xp

= hf(w) + 0+ \NE \:Q — w)?dx
X0

Y
=hfw) + 5 "),

where xp < ¢ < x1. Again, we have used the Mean Value Theorem for Integrals to pull the
second derivative outside of the integral. This completes the derivation of (5.26).

» EXAMPLE 5.10
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The proof of the composite version is left to the reader (Exercise 12).
Composite Midpoint Rule

b - 3%

\ Fedr=nS fan + L g (5.27)

i=1

where h = (b — a)/m and c is between a and b. The w; are the midpoints of the m equal
subintervals of [a, b].

Approximate \o_ sinx/x dx by using the Composite Midpoint Rule with m = 10 panels.

First note that we cannot apply a closed method directly to the problem, without
special handling at x = 0. The midpoint method can be applied directly. The midpoints are
0.05,0.15,...,0.95, so the Composite Midpoint Rule delivers

.\. f(x)dx=0. ~M\A§v = 0.94620858.

The correct answer to eight places is 0.94608307. <

Another useful open Newton—Cotes Rule is

Em .
@ ey, (5.28)

[ = Fesen - s + 261+ g
where h = (x4 — xp)/4,x1 =x0 + h,xa =xg9 + 2h,x3 =x0 + 3h, and where xg <
¢ < x4. The rule has degree of precision three. Exercise 11 asks you to extend it to a
composite rule.

Apply the composite Trapezoid Rule with m = 1, 2, and 4 panels to approximate the integral.
Compute the error by comparing with the exact value from calculus.

1 n/2 1
() \ x*dx (b) \ cosx dx (c) \ & dx
v} 0 0

Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals
in Exercise 1, and report the errors.

Apply the composite Simpson’s Rule with m = 1, 2, and 4 panels to the integrals in Exercise 1,
and report the errors.

Apply the composite Simpson’s Rule with m = 1,2, and 4 panels to the integrals, and report
the errors.
1

1
(a) \ﬁwxmaua (b) A ~+x~ dx (c) \.xnoﬂ:&«

Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals.
Compute the error by comparing with the exact value from calculus.

U dx _L\u 2 dx
@ \oﬂ ) \ok dr (© \OINL
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[

v o

10.

11.

12.

13.
14,
15.

16.

17.

Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals.

T2 _
@ \. 1 —cosx 1-008% 1 ) \. &a © \ cosx &a

Apply the open Newton-Cotes rule (5.28) to approximate the integrals of Exercise 5, and
report the errors.

Apply the open Newton-Cotes rule (5.28) to approximate the integrals of Exercise 6.

Apply Simpson’s Rule approximation to \o_ x* dx, and show that the approximation error
matches the error term from (5.22).

Integrate Newton’s divided-difference interpolating polynomial to prove the formula (a) (5.18)
(b) (5.19).

Find the degree of precision of the following approximation for h_ f(x)dx:

@F) + f(=1) ®) 2/3Lf (=D + fO) + FDI© F(=1/¥3) + F1/V3).

Find ¢y, ¢3, and ¢3 such that the rule
1
\o fx)dx=ci f(0O) + e2f(0.5) +c3f(1)

has degree of precision greater than one. (Hint: Substitute f(x) =1, x, and x2) Do you
recognize the method that results?

Develop a composite version of the rule (5.28), with error term.
Prove the Composite Midpoint Rule (5.27).

Find the degree of precision of the degree four Newton—Cotes Rule (often called Boole’s Rule)
r 2h
\ fO)dx =~ 72(Tyo +32y1 + 122 + 3253 + Tya).
X0

Use the fact that the error term of Boole’s Rule is proportional to f ®)(¢) to find the exact error
term, by the following strategy: Compute Boole’s approximation for \ 3 56 dx, find the
approximation error, and write it in terms of  and f© (c).

Let P3(x) be a degree 3 polynomial, and let P>(x) be its interpolating polynomial at the three
points x = —h, 0, and A. Prove directly that \H_\_ Py(x)dx = \.U_ P;(x) dx. What does this fact
say about Simpson’s Rule?

5.2 Computer Problems

1.

Use the composite Trapezoid Rule with m = 16 and 32 panels to approximate the definite
integral. Compare with the correct integral and report the two errors.

4 1,3 1 3
() _xdx () \, Xdx © \. xe*dx (d) .\. x*Inx dx
0 0 1

0 X + 0 .NN + H
T 3.3 243 1
2 . x° dx dx xdx
e xtsinx dx  (f) — (g) \. ———dx (h) —_—
© \o 2 VP —1 & VxZTya 0 Vx4+1
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2. Apply the composite Simpson’s Rule to the integrals in Computer Problem 1. Use m = 16 and
32, and report errors.

3. Use the composite Trapezoid Rule with m = 16 and 32 panels to approximate the definite
integral.

1, Jr 4 1
) (@) \ e dx (b) \ sinx? dx  (c) \ e dx  (d) \ In(x? + 1) dx
0 0 0 0

xdx T 1 /2
e) \. () \ cose* dx (g \ x*dx (h) \, In(cosx + sinx) dx
0 0 0

2e% — g%

[ 4. Apply the composite Simpson’s Rule to the integrals of Computer Problem 3, using m = 16
_ and 32.

1 5. Apply the Composite Midpoint Rule to the improper integrals of Exercise 5, using
m = 10, 100, and 1000. Compute the error by comparing with the exact value.

6. Apply the Composite Midpoint Rule to the improper integrals of Exercise 6, usingm = 16
and 32.

! 7. Apply the Composite Midpoint Rule to the improper integrals

! (@) \ —~_dx (b) \ =l © \ arctany x.
m:.-\d m:~\d

using m = 16 and 32.

8. The arc length of the curve defined by y = f(x) from x = a to x = b is given by the integral
/ nu V1 + f'(x)? dx. Use the composite Simpson’s Rule with m = 32 panels to approximate
the lengths of the curves

i (a) wuauosﬁo,: (b) y=tanxon[0,7/4] (c) y=arctanx on[0,1].

| 9. For the integrals in Computer Problem 1, calculate the approximation error of the composite
Trapezoid Rule for h = b — a, h/2,h/4,...,k/28, and plot. Make a log-log plot, using, for
example, MATLAB’s loglog command. What is the slope of the plot, and does it agree with
theory?

10.  Carry out Computer Problem 9, but use the composite Simpson’s Rule instead of the
composite Trapezoid Rule.

5.3 ROMBERG INTEGRATION

In this section, we begin discussing efficient methods for calculating definite integrals that
can be extended by adding data until the required accuracy is attained. Romberg Integra-
tion is the result of applying extrapolation to the composite Trapezoid Rule. Recall from
Section 5.1 that, given a rule N(h) for approximating a quantity M, depending on a step
size A, the rule can be extrapolated if the order of the rule is known. Equation (5.24) shows
that the composite Trapezoid Rule is a second-order rule in 4. Therefore, extrapolation can
be applied to achieve a new rule of (at least) third order.

Examining the error of the Trapezoid Rule (5.24) more carefully, it can be shown that,
for an infinitely differentiable function f,
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5.4 Exercises

where we have applied Theorem 5.1 to consolidate the error terms. Subtracting (5.40) from
(5.39) yields

fP%0) _ B )
90 16 90
\ es?uv
a 90

Sta.b) — (Sia,c) + Sie.p) = w
(5.41)

where we make the approximation f (V) (¢c3) = £ (cg).
Since Sig,p] — (Sta.c} + Sic,51) is now 15 times the error of the approximation Sia,c] +
Sic.»; for the integral, we can make our new criterion

1Sta.b] — (Sta,c1 + Sie,p))| < 15 * TOL (5.42)

and proceed as before. It is traditional to replace the 15 by 10 in the criterion to make the
algorithm more conservative. Figure 5.5(b) shows an application of Adaptive Simpson’s
Quadrature to the same integral. The approximate integral is 2.500 when a tolerance of 0.005
is used, using 20 subintervals, a considerable savings over adaptive Trapezoid Rule Quadra-
ture. Decreasing the tolerance to 0.5 x 10~* yields 2.5008, using just 58 subintervals.

5.4 Computer Problems

Apply Adaptive Quadrature by hand, using the Trapezoid Rule with tolerance TOL = 0.05 to
approximate the integrals. Find the approximation error.

1 n/2 1
(a) \. x2dx (b) \. cosx dx (c) \ et dx
0 0 0

Apply Adaptive Quadrature by hand, using Simpson’s Rule with tolerance TOL = 0.01 to
approximate the integrals. Find the approximation error.

1 . U dx d
(a) \oxm dx (b) \ﬂw _+a~&a ©) \aooz X

Develop an Adaptive Quadrature method for the Midpoint Rule (5.26). Begin by finding a
criterion for meeting the tolerance on subintervals.

Develop an Adaptive Quadrature method for rule (5.28).

1.

2. Modify the MATLAB code for Adaptive Trapezoid Rule Quadrature to use Simpson’s Rule

Use Adaptive Trapezoid Quadrature to approximate the definite integral within 0.5 x 1078,
Report the answer with eight correct decimal places and the number of subintervals required.

4 xdx .\._ x3dx \._ . .\.u 2
—— —— {c xetdx (d) x“Inx dx
® \ﬁ.v x2+9 ® o x*+1 © 0 1

T 3 X34 V3 gy U xdx
26 = = 0 | o=
(e) .\A‘v x“sinx dx () \u. NP & \. x (h) s i X

instead, applying the criterion (5.42) with the 15 replaced by 10. Approximate the integral in
Example 5.12 within 0.005, and compare with Figure 5.5(b). How many subintervals were
required?

7.
8.

9.
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Carry out the steps of Computer Problem 1 for adaptive Simpson’s Rule, developed in
Computer Problem 2.

Carry out the steps of Computer Problem 1 for the adaptive Midpoint Rule, developed in
Exercise 3.

Carry out the steps of Computer Problem 1 for the adaptive open Newton—Cotes Rule
developed in Exercise 4. Use criterion (5.42) with the 15 replaced by 10.

Use Adaptive Trapezoid Quadrature to approximate the definite integral within 0.5 x 1078,

| B, Jr b4 1
(a) \ e dx (b) \ sinx’dx  (c) \ €% dx  (d) \ In(x? + 1) dx
0 0 0 0

xdx 4 1 /2
(e) \. (f) \. cose* dx (g) \. xYdx (h) .\. In{cosx + sinx) dx
Mm« — e~ 0 0 0

Carry out the steps of Problem 6, using Adaptive Simpson’s Quadrature.
The probability within o standard deviations of the mean of the normal distribution is
1 o
Vi )=

Use Adaptive Simpson’s Quadrature to find, within eight correct decimal places, the
probability within (a) 1 (b) 2 (c) 3 standard deviations.

12 dx.

Write a MATLAB function called myerf . m that uses Adaptive Simpson’s Rule to calculate the
value of

2 [
GﬁmA.«.v"N b [ &h

within eight correct decimal places for arbitrary input x. Test your program for x = 1 and
x = 3 by comparing with MATLAB’s function er £.

5.5 GAUSSIAN QUADRATURE

The degree of precision of a quadrature method is the degree for which all polynomial
functions are integrated by the method with no error. Newton—Cotes Methods of degree n
have degree of precision n (for n odd) and n + 1 (for n even). The Trapezoid Rule (Newton—
Cotes for n = 1) has degree of precision one. Simpson’s Rule (n = 2) is correct up to and
including third degree polynomials.

To achieve this degree of precision, the Newton-Cotes formulas use n 4+ 1 function
evaluations, done at evenly spaced points. The question we ask is reminiscent of our discus-
sion in Chapter 3 about Chebyshev polynomials. Are the Newton—Cotes formulas optimal
for their degree of precision, or can more powerful formulas be developed? In particu-
lar, if the requirement that evaluation points be evenly spaced is relaxed, are there better
methods?

At least from the point of view of degree of precision, there are more powerful and
sophisticated methods. We pick out the most famous one to discuss in this section. Gaussian
Quadrature has degree of precision 2n + 1 when n + 1 points are used, double that of
Newton—Cotes. The evaluation points are not evenly spaced. Explaining how Gaussian
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5.5 Exercises

1.

Reality ¢/
Check B

Approximate the integrals, using n = 2 Gaussian Quadrature. Compare with the correct value,
and give the approximation error.
1

1 1 1
(a) \ 3 +2x)dx (b) \ x*dx (© \ e dx () \ _8&; dx
-1 -1 -1 -

Approximate the integrals in Exercise 1, using n = 3 Gaussian Quadrature, and give the
error.

Approximate the integrals in Exercise 1, using n = 4 Gaussian Quadrature, and give the error.
Change variables, using the substitution (5.46) to rewrite as an integral over [—1, 1].
4 xdx \. I x3dx \. ! 3,
a — () xet dx (d) \ x“Inx dx
® \oz\xm+o ®) o x2+1 0 1

Approximate the integrals in Exercise 4, using n = 3 Gaussian Quadrature.

Approximate the integrals, using n = 4 Gaussian Quadrature.

3 2

1 4 2 2
(a) \ (3 +2x)dx (b) \ Inxdx (c) \ _au&ﬂ (d) \ e T dx
0 1 -

-3

Show that the Legendre polynomials pi(x) = x and pa(x) = x2 — 1/3 are orthogonal on
[—1,1].

Find the Legendre polynomials up to degree 3 and compare with Example 5.13.
Verify the coefficients ¢; and x; in Table 5.1 for degree n = 3.

Verify the coefficients ¢; and x; in Table 5.1 for degreen =4.

Motion Control in Computer-Aided Modeling

Computer-aided modeling and manufacturing requires precise control of spatial position
along a prescribed motion path. We will illustrate the use of Adaptive Quadrature to solve
a fundamental piece of the problem: equipartition, or the division of an arbitrary path into
equal-length subpaths.

In numerical machining problems, it is preferable to maintain constant speed along the
path. During each second, progress should be made along an equal length of the machine—
material interface. In other motion planning applications, including computer animation,
more complicated progress curves may be required: A hand reaching for a doorknob might
begin and end with low velocity and have higher velocity in between. Robotics and virtual
reality applications require the construction of parametrized curves and surfaces to be
navigated. Building a table of small equal increments in path distance is often a necessary
first step.

Assume that a parametric path P = {x(¢), y#)|0 <t < 1} is given. Figure 5.6 shows
the example path

x(t) = 0.5 + 03¢ +3.9:2 — 474

L y(t) = 1.5+ 0.3t + 092 — 2.7 °
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Figure 5.6 Parametrized curve given by Bézier spline. Typically, equal intervals of
the parameter t do not divide the path into segments of equal length.

which is the Bézier curve defined by the four points (0.5, 1.5), (0.6, 1.6), (2, 2), (0, 0). (See
Section 3.5.) Points defined by evenly spaced parameter values t =0,1/4,1/2,3/4,1 are
shown. Note that even spacing in parameter does not imply even spacing in arc length. Your
goal is to apply quadrature methods to divide this path into n equal lengths.

Recall from calculus that the arc length of the path from #; to ¢, is

5]
\ H(1)? + y'(1)? dr.
4]

Only rarely does the integral yield a closed-form expression, and normally an Adaptive
Quadrature technique is used to control the parametrization of the path.

Suggested activities:

1. Write a MATLAB function that uses Adaptive Quadrature to compute the arc length from
t=0tor=TforagivenT <1.

2. Write a program that, for any input s between 0 and 1, finds the parameter ¢*(s) that is s
of the way along the curve. In other words, the arc length from r = 0 to z = ¢*(s) divided
by the arc length from ¢t = O to t = 1 should be equal to 5. Use the Bisection Method to
locate the point t*(s) to three correct decimal places. What function is being set to zero?
What bracketing interval should be used to start the Bisection Method?

w

Equipartition the path of Figure 5.6 into » subpaths of equal length, for n = 4 and n = 20.
Plot analogues of Figure 5.6, showing the equipartitions. If your computations are too slow,
consider speeding up the Adaptive Quadrature with Simpson’s Rule, as suggested in
Computer Problem 5.4.2.

»

Replace the Bisection Method in Step 2 with Newton’s Method, and repeat Steps 2 and 3.
What is the derivative needed? What is a good choice for the initial guess? Is computation
time decreased by this replacement?

v

Appendix A demonstrates animation commands available in MATLAB. For example, the
commands

set(gca, 'XLim’,[~-2 2],'YLim’,[-2 2], 'Drawmode’,'fast’,...
'Visible'’,’on’);

cla

axis square
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