"Teorioppgaver"

1 Oppgave 10.1.1

Solution:

(a) $x=[0,1,0,-1]$,

$$
y_{k}=\frac{1}{2} \sum_{j=0}^{3} x_{j} \exp (-i 2 \pi j k / 4)=\frac{1}{2}[\exp (-i 2 \pi k / 4)-\exp (-i 6 \pi k / 4)]
$$

Thus $y_{0}=0, y_{1}=[\exp (-i \pi / 2)-\exp (-i 3 \pi / 2)] / 2=[-i-i] / 2=-i, y_{2}=[\exp (-i \pi)-$ $\exp (-i 3 \pi)] / 2=[-1-(-1)] / 2=0, y_{3}=[\exp (-i 3 \pi / 2)-\exp (-i 9 \pi / 2)] / 2=[i-$ $(-i)] / 2=i$,
(b) $x=[1,1,1,1], y_{0}=2, y_{1}=[\exp (-i \pi / 2)+\exp (-i \pi)+\exp (-3 i \pi / 2)+\exp (-2 i \pi)] / 2=$ $[-i-1+i+1] / 2=0, y_{2}=0, y_{3}=0$.
(c) $x=[0,-1,0,1]$, which is just negative of x in (a). Since DFT is linear \Longrightarrow $y=[0, i, 0,-i]$.
(d) $x=[0,1,0,-1,0,1,0,-1]$, that is, the repetition of x in (a) twice. Thus

$$
\begin{aligned}
y_{k} & =\frac{1}{\sqrt{8}} \sum_{j=0}^{7} x_{j} \exp (-i 2 \pi j k / 8) \\
& =\frac{1}{2 \sqrt{2}} \sum_{j=0}^{3} x_{j} \exp (-i 2 \pi j k / 8)+\frac{1}{2 \sqrt{2}} \sum_{j=4}^{7} x_{j} \exp (-i 2 \pi j k / 8) \\
& =\frac{1}{2 \sqrt{2}} \sum_{j=0}^{3} x_{j} \exp (-i 2 \pi j k / 8)+\frac{1}{2 \sqrt{2}} \exp (-i 2 \pi 4 k / 8) \sum_{j=0}^{3} x_{j} \exp (-i 2 \pi j k / 8) \\
& =\frac{1}{2 \sqrt{2}}[1+\exp (-i \pi k)] \sum_{j=0}^{3} x_{j} \exp (-i 2 \pi j k / 8) .
\end{aligned}
$$

In particular, the factor in the square brackets equals 2 for even k and 0 for odd k, and therefore $y_{k}=0$ for all odd $k=1,3,5,7$. Furthermore, for even $k=0,2,4,6$ the sum in the last expression equals that of the sum in (a) for $k / 2$. Thus $y_{0}=0$, $y_{2}=-i \sqrt{2}, y_{4}=0, y_{6}=i \sqrt{2}$.

2 Oppgave 10.1.7

03 Prove the following identity (Parseval's theorem for DFT): Let $y^{(1)}=\operatorname{DFT}\left(x^{(1)}\right.$ and $y^{(2)}=\operatorname{DFT}\left(x^{(2)}\right)$. Then $\sum_{j=0}^{n-1} x_{j}^{(1)} \bar{x}_{j}^{(2)}=\sum_{j=0}^{n-1} y_{k}^{(1)} \bar{y}_{k}^{(2)}$.
Hint: $y^{(1,2)}=F_{n} x^{(1,2)}$.

Solution:

$$
\sum_{j=0}^{n-1} y_{k}^{(1)} \bar{y}_{k}^{(2)}=\left[\bar{y}^{(2)}\right]^{T} y^{(1)}=\left[\bar{F}_{n} \bar{x}^{(2)}\right]^{T} F_{n} x^{(1)}=\left[\bar{x}^{(2)}\right]^{T} \underbrace{\bar{F}_{n}^{T} F_{n}}_{=I} x^{(1)}=\sum_{j=0}^{n-1} x_{j}^{(1)} \bar{x}_{j}^{(2)},
$$

since $\bar{F}_{n}^{T}=F_{n}^{-1}$ (see for example (10.11) in $[\mathrm{S}]$).

4 Prove the following identity (circular shift theorem for DFT): Let $\tilde{x}_{j}=\exp (i 2 \pi j m / n)$, where $i^{2}=-1$ and m is an integer. Let $y=\operatorname{DFT}(x)$, and $\tilde{y}=\operatorname{DFT}(\tilde{x})$. Show that $\tilde{y}_{k}=y_{k-m}$, where the subscript $k-m$ is understood modulo n (in other words, the sequence y is assumed to be periodically repeating with period n).

Solution:

$$
\begin{aligned}
\tilde{y}_{k} & =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \tilde{x}_{j} \exp (-i 2 \pi j k / n)=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_{j} \exp (i 2 \pi j m / n) \exp (-i 2 \pi j k / n) \\
& =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_{j} \exp (-i 2 \pi j(k-m) / n)=y_{k-m},
\end{aligned}
$$

since $k \mapsto \exp (-i 2 \pi j k / n)=\cos (2 \pi j k / n)-i \sin (2 \pi j k / n)$ is a periodic function with period n.

"Computeroppgaver"

5 Implement Cooley-Tukey's algorithm for computing DFT:

```
function [y,nop] = myfft(x)
% Implementation of FFT
%
% Input: x, supposed to be a vector of length 2^p
%
% Output: y: FFT(x)
% nop: number of operations required
%
```

Verify it against Matlab's FFT (recall that Matlab uses a different scaling of DFT). Check that the number of operations needed by Cooley-Tukey's algorithm scales as $O(N \log (N))$ by plotting the number of iterations vs. N and $N \log (N)$ on a $\log -\log$ plot for a range of $N=2^{p}$.

Solution:

See myfft.m and check_myfft.m.

