“Teorioppgaver”

1. Oppgave 10.1.1

2. Oppgave 10.1.7

3. Prove the following identity (Parseval’s theorem for DFT): Let $y^{(1)} = \text{DFT}(x^{(1)})$ and $y^{(2)} = \text{DFT}(x^{(2)})$. Then $\sum_{j=0}^{n-1} x_j^{(1)} \overline{x_j^{(2)}} = \sum_{k=0}^{n-1} y_k^{(1)} \overline{y_k^{(2)}}$.

 Hint: $y^{(1,2)} = F_n x^{(1,2)}$.

4. Prove the following identity (circular shift theorem for DFT): Let $\tilde{x}_j = \exp(i2\pi jm/n)$, where $i^2 = -1$ and m is an integer. Let $y = \text{DFT}(x)$, and $\tilde{y} = \text{DFT}(\tilde{x})$. Show that $\tilde{y}_k = y_{k-m}$, where the subscript $k - m$ is understood modulo n (in other words, the sequence y is assumed to be periodically repeating with period n).

“Computeroppgaver”

5. Implement Cooley–Tukey’s algorithm for computing DFT:

 function [y,nop] = myfft(x)
 % Implementation of FFT
 %
 % Input: x, supposed to be a vector of length 2^p
 %
 % Output: y: FFT(x)
 %
 % nop: number of operations required
 %

 Verify it against Matlab’s FFT (recall that Matlab uses a different scaling of DFT). Check that the number of operations needed by Cooley–Tukey’s algorithm scales as
\(O(N \log(N)) \) by plotting the number of iterations vs. \(N \) and \(N \log(N) \) on a log-log plot for a range of \(N = 2^p \).